An Efficient Data-driven Approach for
!Emergency Medical Services

Lavanya Marla
University of lllinois at Urbana-Champaign

Collaborators: Prof. Ramayya Krishnan (CMU),
Dr. Yisong Yue (Caltech)

1867
™
[LLINOIS
UNSERSITY OF ILLINGIS AT LABANACHAMPAGN

1/29/15



Talk outline

e Ground Realities for EMS in Emerging Economies
e Data-driven Simulation
e Mathematical Formulations

e Results

e Ongoing and Future Work
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EMS in Emerging Economies: Ground
Realities

e Highly resource constrained
— 75M people, 750 ambulance bases (AP)

e Large-scale

e Prior to this operator, no central ambulance provider
— Hospital ambulances, taxis

e Public-private partnership
— No fees charged for service (paid by state)

e Cell-phone-based communications
e DATA COLLECTION
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Service Area, Bases and Calls
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Inefficiencies in spite of sophisticated models

Existing
literature:
. /
medium- —_—
scale
Non-linearities between
survival and service time
Multiple _ "L\
heterogeneous % ALS 2
- bR ,l | B
resources — f\ \ TR
ALS, BLS S s
(- , T A }
Discrete w aLS Network effect — Propagation

effect of ambulances in use

Source:
http://www.castlelab.princeton.edu/transportationlogistics.htm, http://sbb.ch,
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Challenges in EMS in Emerging Economies

e Traffic congestion
— Public acceptability

e Clear traffic for ambulance

e Competition with ad-hoc networks

— Decreases utilization of ambulances
e No real-time position availability
e New cities

— New traffic patterns

— New modes of transport
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Key Questions of Interest

e How can performance be improved using existing resources
(e.g., ambulances)?
— Static allocation?
— Dynamic redeployment?
— Change dispatch policy?

e How to characterize the state of the system?
— Metrics

e How to model how the system is affected by current
allocation and dispatching policy?

e (Can a decision support tool be developed to answer these
guestions?
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Key concepts

e Network consists of ambulances located at bases

e Each base’s coverage area is approximately a set of
grids around it

e Each call has a priority queue of bases
— Best served by first base in queue

e A served call consists of:
— ambulance arriving from its base to the scene
— taking the patient to a hospital

— returning to (same/another) base
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Design Principles

e Do not add extra bases or ambulances than those
determined by the operator

— Logistical challenges

e Consistency with current dispatching model
— Calls served FCFS
— Assign nearest free ambulance available

— Priority queue for ambulances: learn from data logs
(congestion implicit)

e Derive congestion information from data logs
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Contributions

Models

Algorithms

Applications

Problem-driven, data-driven models

Problem structure, solution quality, tractability

Static allocation of ambulances

Dynamic redeployment of ambulances

Emergency Medical Systems

Disaster response, humanitarian logistics

Facility location
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Our approach

e Use data collected by the operator (call logs)
— Capture time-dependent travel times

— Optimize for metrics like preparedness, survival
probabilities

— Scalability
e Learn from the system data

e Build a solution that is faithful to the data (call logs)

Goal 1: Efficient and robust ambulance allocation

Goal 2: Dynamic repositioning policy
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Solution Approach Summary
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Modeling Concept: Chain Formation
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Modeling Concept: Chain Formation
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Modeling Concept: Chain Formation

- \% > an Changed set o
18 min g . f
25 min L (12 minutes saved) dependenC/es
w for new
allocation

/33 2

15 min
(30 minutes saved)

(no vehicle assigned previously)
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Modeling Concept: Dependency Chains

Given: One ambulance each at b1 — b5; dispatch policy; request (call) set

Call 1

Call 2

Call 3

Call 4

Request set R

Call 5

Call 6

Call 7

{B1, B2,..}

(B2, B3,..) @

{B1, B2, B3,...} '

{B1, B2, B3, B4} @

{B3, B5}

(B3, B4, B5, B1} @

S

e

{B1, B5, B4}
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Simulation Framework to Compute
Allocation Cost

Simulation approach to evaluate
ambulance-to-base allocations

* Simulate Dispatch Officer assigning ambulances
to calls

* Simulate response times and outcomes

» Data-driven approach (based on actual call

logs)

Based on call logs we can model:

* Call congestion patterns
* Chains and other long-range system effects
 Utilization of various base locations
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Breaking dependencies improves service

1 ambulance each at B, — B, Add ambulance to B, Add ambulance to B,
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Modeling Abandonment

e Customer calls multiple service providers, limited
patience for waiting

+ s ol < ‘, TN
- —

— Choose the one which arrives first

e Abandonment model

logProb(abandoned) /Prob(not abandoned) =40 + 441 xl1 + 442 xl2 + I3
xd3

— x, = 1if request from a rural area
— X, = base-to-scene * if (urban, peak hour)

— x; = base-to-scene * if (rural, peak hour)

Data-driven Models for Ambulance Location and Redeployment 1/29/15
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Mathematical Formulations

— R =Request set
— G, = dependency graph
— Lg(A) = total cost of allocation A for request R, from evaluating G,

Utility of Static Allocation: FIR (A)=LIR (D)—LIR (AT

Static Allocation Objective: "AeM (A):|A[<KTargmaxl FIR
(4)

— s, = state of the system at time t

— W, = currently free allocation

s T

Dynamic Redeployment Utility:

NAeEM (AWIsIt ). [AISWislt Targmax!

Dynamic (myopic) Redeployment:
Y (myopic) Redeploy FIR It (A|sit)
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Claim: F is submodular?

o /(A) is submodular iff
VACE Va OLF aA =>0lF aFF
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Simulation-Optimization (Greedy algorithm)
Goal: Allocate N ambulances among M bases

Number
> ambulances
added < N?

v

Test adding an ambulance at location b € B

Add one
>ambulance

RN per iteration
N
\\
NINY
Simulate Simulate ... Simulate calls:
calls: F(A+a;) || calls: F(A+a,) F(A+a g)
7
// ///
/7 L
/7 7 _

Find location b* with most improvement in F(A)

v
Add ambulance at b*

Running time = NB * O(Simulator)
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Non-submodularity of F (static and dynamic)

e |f monotone submodular, greedy algorithm returns
solutions that achieve

F(A)=>(1—1/e )OPT

e Approximate monotonicity: VA Va OLF
aA+elm =0

e Approximate submodularity:

VACE Va OLF aAd +els >0LF aFF
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Theoretical Guarantees and Bounds (1)

Theorem: Let F be approximate submodular with additive
violation  and approximate monotone with additive violation
.Let A, ..,A, denote the intermediate solutions of Greedy

as it optimizes on F for a budget of K ambulances, the greedy
algorithm produces an allocation A that satisfies

e Need to compute €ls and elm

e |nteger program written based on dependency chain
model
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Theoretical Bounds: Omniscient dispatcher

Maximize ‘gain’

Utility of an Omniscient dispatcher (G):

Serve each call

s.t. =1
Ambulance count

at each base

Ambulance count

on network

Theorem: The objective, G, as measured by simulating an omniscient
dispatcher, is monotone submodular. Furthermore, for and A and R, we have
. Also, for any A with [A/=K,
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Cost Function F

o LIr ()={MO if service time <15 min@1:f
service time <30 min@M2 [f service time
<60 min5 otherwise }
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Metrics and Static allocation

LIr (v)={MO (f service time <15
min@1if service time <30

Result:’g rle%@ %'%hgr?isr'n%irﬂg/lecs'% r%n ‘éosééeo a ﬂ%zclg%gn of
operat@d1€rWIise

Metric Improvement over
baseline allocation
# Calls w/ Base-to-scene < 15 min 6.1% (increase)
# Calls w/ Base-to-scene <30 min 3.4%
(increase)
# Ambulances Busy 42.7%
(decrease)
# Calls serviced by primary base 9.4%
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Bounds

Result: Greedy solution close to bound from optimal dispatch
allocation => ‘close’ to optimal
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Dynamic repositioning

e Under high demand regions
— ‘System stress’

e Re-position ambulances in real-time
— Move free ambulances from ‘home’ base to nearby bases
— Waiting on street corners
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Dynamic repositioning vs. static allocation

Result 1: More redeployment produces better service
Result 2: Most impacted metric = number of calls served
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Value of Dynamic Repositioning

e Value in dynamic repositioning compared to static

Look-ahead = 45 min

Calls served with base-scene <15

min 39.32%
Calls with base-scene <30 min -0.1%
Calls served by primary base -1.8%
Calls not served (vehicles busy) -30.6%

e Most impacted metric: calls served

e Value higher when greater flexibility in repositioning —
example: more often, more ambulances allowed to be
repositioned
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Robustness under congestion fluctuations

Result: Even under variability in demands and travel times, the
Greedy solution shows improvement over default.

0% increase in 10% increase in 15% increase in
demand demand demand

Base-to-scene <15 min 6.1% 5.7% 5.0%
Base-to-scene <30 min 3.4% 3.5% 3.8%
Served by primary base 9.4% 10.1% 10.3%
Calls not served -42.7%% -36.2% -33.3%
I i i
travel time time time
Base-to-scene <15 min 6.1% 5.7% 4.9%
Base-to-scene <30 min 3.4% 3.9% 3.7%
Served by primary base 9.4% 10.4% 10.5%
Calls not served -42.7%% -35.0% -31.5%

*Measured using simulation on independent data, for a period of one month
][ Data-driven Models for Ambulance Location and Redeployment 1/29/15 35




Bounds with abandonment

Result: Optimality gap remains similar in the case of
abandonment => ‘close’ to optimal

16000

14000 _- = T~ ..

_. .
12000 Submodular Upper Bound

=B -Lazy Greedy Solution
* & * Omniscient Dispatch (Eq 6.6)

= Omniscient-Optimal Bound (Eq
6.12)

=== (Omniscient Optimal Bound
Abandonment (Eq 6.12)

=®=|azy Greedy with
Abandonment

Cost Savings

10 20 30 40 50 60

Iterations of Greedy Algorithm (=Num ambulances added)
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Solutions with abandonment

Result: Improvements with respect to all metrics

0.33
0.32
0.31

0.3
0.29
0.28
0.27
0.26
0.25
0.24

Fraction of calls with base-
to-scene <15 min
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Default

Fraction of calls to which
ambulance dispatched (among

Static

unabandoned)

1

0.95

0.9

0.8

0.75

0.78
0.76
0.74
0.72

0.7
0.68
0.66
0.64
0.62

0.6
0.58

Fraction of calls with base-
to-scene <30 min

Dynamic 30

min

Default Static Dynamic 30
min

M As fraction of all calls

M As fraction of
unabandoned
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Opportunity cost of abandonment

e Abandoned calls add inefficiency to the system

e Ambulance could have served another customer
(with a better service level)

e How much is lost due to abandoned calls?
— Find optimal allocation when abandoned calls existed

— Remove abandoned calls and measure impact of optimal
allocation

e 12% calls abandoned in data set

— ~6% improvement when abandoned calls ignored
— Remaining 6% of calls do not reduce service level
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Opportunity Cost of Abandonment
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Takeaways

e Static allocation provides good results compared to
baseline operations.

e More repositioning makes more ambulances
available where needed; covers requests better

— Reposition often if idle travel cost is low

e Greedy algorithm is quick, particularly for dynamic
redeployment (<~10s)

e Solutions from our algorithm are robust

e Opportunity cost of abandonment is about 50% that
of fraction of abandoned calls
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New/needed technology: Traffic models

e EXisting routes

— Currently use data-driven models for traffic
congestion capture

— Allows to extrapolate data for routes taken in past

e New routes?

— Crowdsource/obtain traffic information from
other ambulances

— Communication between ambulances to share
traffic data

Data-driven Models for Ambulance Location and Redeployment 1/29/15
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New/needed technology: Human behavior
models

e ‘Conflict’ between existing ad-hoc networks and the
operator’s network

e Customer calls multiple service providers

._‘,“,\

+ s g Ay e
E—

— Choose the one which arrives first

e Modeled higher abandonment in select urban areas

e How to improve ambulance utilization?
— Better dispatching models?

e What system can lead to improved social welfare?
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Robust and Dynamic Approaches for Evolving
Infrastructure
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