An Efficient Data-driven Approach for Emergency Medical Services

Lavanya Marla

University of Illinois at Urbana-Champaign

Collaborators: Prof. Ramayya Krishnan (CMU),

Dr. Yisong Yue (Caltech)

Talk outline

- Ground Realities for EMS in Emerging Economies
- Data-driven Simulation
- Mathematical Formulations
- Results
- Ongoing and Future Work

EMS in Emerging Economies: Ground Realities

- Highly resource constrained
 - 75M people, 750 ambulance bases (AP)
- Large-scale
- Prior to this operator, no central ambulance provider
 - Hospital ambulances, taxis
- Public-private partnership
 - No fees charged for service (paid by state)
- Cell-phone-based communications
- DATA COLLECTION

Service Area, Bases and Calls

Inefficiencies in spite of sophisticated models

Existing literature: medium-scale

Non-linearities between survival and service time

Multiple heterogeneous resources – ALS, BLS

ALS

'Discrete'

BLS

Network effect – Propagation effect of ambulances in use

Source:

http://www.castlelab.princeton.edu/transportationlogistics.htm, http://sbb.ch,

www.colinfahey.com

Challenges in EMS in Emerging Economies

- Traffic congestion
 - Public acceptability
 - Clear traffic for ambulance
- Competition with ad-hoc networks
 - Decreases utilization of ambulances
- No real-time position availability
- New cities
 - New traffic patterns
 - New modes of transport

Key Questions of Interest

- How can performance be improved using existing resources (e.g., ambulances)?
 - Static allocation?
 - Dynamic redeployment?
 - Change dispatch policy?
- How to characterize the state of the system?
 - Metrics
- How to model how the system is affected by current allocation and dispatching policy?
- Can a decision support tool be developed to answer these questions?

Key concepts

- Network consists of ambulances located at bases
- Each base's coverage area is approximately a set of grids around it
- Each call has a priority queue of bases
 - Best served by first base in queue
- A served call consists of:
 - ambulance arriving from its base to the scene
 - taking the patient to a hospital
 - returning to (same/another) base

Design Principles

- Do not add extra bases or ambulances than those determined by the operator
 - Logistical challenges
- Consistency with current dispatching model
 - Calls served FCFS
 - Assign nearest free ambulance available
 - Priority queue for ambulances: learn from data logs (congestion implicit)
- Derive congestion information from data logs

Contributions

Models

- Problem-driven, data-driven models
- Problem structure, solution quality, tractability

Algorithms

- Static allocation of ambulances
- Dynamic redeployment of ambulances

Applications

- Emergency Medical Systems
- Disaster response, humanitarian logistics
- Facility location

Our approach

- Use data collected by the operator (call logs)
 - Capture time-dependent travel times
 - Optimize for metrics like preparedness, survival probabilities
 - Scalability
- Learn from the system data
- Build a solution that is faithful to the data (call logs)

Goal 1: Efficient and robust ambulance allocation

Goal 2: Dynamic repositioning policy

Solution Approach Summary

Talk outline

- Ground Realities for EMS in Emerging Economies
- Data-driven Simulation
- Mathematical Formulations
- Results
- Ongoing and Future Work

Modeling Concept: Chain Formation

Modeling Concept: Chain Formation

Modeling Concept: Chain Formation

Changed set of dependencies for new allocation

Modeling Concept: Dependency Chains

Given: One ambulance each at b1 - b5; dispatch policy; request (call) set

Request set R

Call	1
------	---

 B_4

 B_1

 B_{4}

Simulation Framework to Compute Allocation Cost

Request set R

Simulation approach to evaluate ambulance-to-base allocations

- Simulate Dispatch Officer assigning ambulances to calls
- Simulate response times and outcomes
- Data-driven approach (based on actual call logs)

 $L \downarrow R (A) = \sum r \in R \uparrow \equiv L \downarrow r (y \downarrow r, o \downarrow r); \{ \blacksquare y \downarrow r = ambulance \ algorithm \}$

Based on call logs we can model:

- Call congestion patterns
- Chains and other long-range system effects
- Utilization of various base locations

Breaking dependencies improves service

1 ambulance each at B₁ – B₅

Add ambulance to B₁

Add ambulance to B₂

Modeling Abandonment

Customer calls multiple service providers, limited patience for waiting

- Choose the one which arrives first
- Abandonment model

 $logProb(abandoned)/Prob(not\ abandoned) = \beta \downarrow 0 + \beta \downarrow 1\ x \downarrow 1 + \beta \downarrow 2\ x \downarrow 2 + \beta \downarrow 3\ x \downarrow 3\ \downarrow$

- $-x_1$ = 1 if request from a rural area
- $-x_2$ = base-to-scene * if (urban, peak hour)
- $-x_3$ = base-to-scene * if (rural, peak hour)

Talk outline

- Ground Realities for EMS in Emerging Economies
- Data-driven Simulation
- Mathematical Formulations
- Results
- Ongoing and Future Work

Mathematical Formulations

- -R = Request set
- $-G_R$ = dependency graph
- $-L_R(A)$ = total cost of allocation A for request R, from evaluating G_R

Utility of Static Allocation: $F^{\downarrow R}(A) = L^{\downarrow R}(\emptyset) - L^{\downarrow R}(A) \uparrow$

Static Allocation Objective: $^{\wedge}A\epsilon\mathcal{M}(\mathcal{A}):|A|\leq K\uparrow argmax \downarrow F \downarrow R$ (A)

- $-s_t$ = state of the system at time t
- W_{st} = currently free allocation

 $F \downarrow R(\pi) = E \downarrow (s1,...,sT) E[\Sigma t = 1 \uparrow T \# F(\pi(s \downarrow t))]$

Dynamic Redeployment Utility: $S^{\downarrow t}$

Dynamic (myopic) Redeployment: $^{\wedge}A\in\mathcal{M}(A,W\downarrow s\downarrow t\):|A|\leq W\downarrow s\downarrow t\ ^{\wedge}argmax\downarrow F\downarrow R\downarrow t\ (A|s\downarrow t\)$

Claim: F is submodular?

• F(A) is submodular iff

$$\forall A \subseteq B, \forall a, \delta \downarrow F \ aA \ge \delta \downarrow F \ aB$$

Cain of ambulance a only decreases with larger allocations

A_1	A_2	F(A)	A_1	A_2	F(A)
1	1	1	2	1	1
1	2	1	2	2	2
Ga	ain	0	Ga	ain	1

Rare case in data but happens nonetheless!

Simulation-Optimization (Greedy algorithm)

Goal: Allocate N ambulances among M bases

Non-submodularity of *F* (static and dynamic)

 If monotone submodular, greedy algorithm returns solutions that achieve

$$F(A) \ge (1 - 1/e)OPT$$

• Approximate monotonicity: $aA + \epsilon lm > 0$

$$\forall A, \forall a, \delta \downarrow F$$

Approximate submodularity:

$$\forall A \subseteq B, \forall a, \delta \downarrow F aA + \epsilon \downarrow s \geq \delta \downarrow F aB$$

Theoretical Guarantees and Bounds (1)

Theorem: Let F be approximate submodular with additive violation and approximate monotone with additive violation . Let $A_1, ..., A_k$ denote the intermediate solutions of Greedy as it optimizes on F for a budget of K ambulances, the greedy algorithm produces an allocation A that satisfies

- Need to compute $\epsilon \downarrow s$ and $\epsilon \downarrow m$
- Integer program written based on dependency chain model

Theoretical Bounds: Omniscient dispatcher

Utility of an *Omniscient dispatcher (G)*:

s.t. = 1

Maximize 'gain'

Serve each call

Ambulance count at each base

Ambulance count on network

Theorem: The objective, G, as measured by simulating an omniscient dispatcher, is monotone submodular. Furthermore, for and A and R, we have . Also, for any A with |A|=K,

Talk outline

- Ground Realities for EMS in Emerging Economies
- Data-driven Simulation
- Mathematical Formulations
- Results
- Ongoing and Future Work

Cost Function F

• $L \downarrow r(y) = \{ \blacksquare 0 \text{ if service time } \le 15 \text{ min@1 if service time } \le 30 \text{ min@12 if service time} \le 60 \text{ min5 otherwise} \}$

Metrics and Static allocation

$$L \downarrow r(y) = \{ \blacksquare 0 \text{ if service time } \le 15 \text{ min@1 if service time } \le 30 \text{ }$$

Result: Greedy solution improves upon baseline allocation of operator therwise $\{60 \text{ min5} \}$

Metric	Improvement over baseline allocation
# Calls w/ Base-to-scene < 15 min	6.1% (increase)
# Calls w/ Base-to-scene <30 min	3.4% (increase)
# Ambulances Busy	42.7% (decrease)
# Calls serviced by primary base	9.4%

Bounds

Result: Greedy solution close to bound from optimal dispatch allocation => 'close' to optimal

Iterations of Greedy Algorithm (=Num ambulances added)

Dynamic repositioning

- Under high demand regions
 - 'System stress'
- Re-position ambulances in real-time
 - Move free ambulances from 'home' base to nearby bases
 - Waiting on street corners

Dynamic repositioning vs. static allocation

Result 1: More redeployment produces better service

Result 2: Most impacted metric = number of calls served

Value of Dynamic Repositioning

Value in dynamic repositioning compared to static

L	ook-ahead = 45 min
Calls served with base-scene <15 min	39.32%
Calls with base-scene <30 min	-0.1%
Calls served by primary base	-1.8%
Calls not served (vehicles busy)	-30.6%

- Most impacted metric: calls served
- Value higher when greater flexibility in repositioning example: more often, more ambulances allowed to be repositioned

Robustness under congestion fluctuations

Result: Even under variability in demands and travel times, the Greedy solution shows improvement over default.

	0% increase in demand	10% increase in demand	15% increase in demand
Base-to-scene <15 min	6.1%	5.7%	5.0%
Base-to-scene <30 min	3.4%	3.5%	3.8%
Served by primary base	9.4%	5 10.1%	10.3%
Calls not served	-42.7%%	-36.2%	-33.3%
	0% increase in travel time	10% increase in travel time	15% increase in travel time
Base-to-scene <15 min	6.1%	5.7%	4.9%
Base-to-scene <30 min	3.4%	3.9%	3.7%
Served by primary base	9.4%	5 10.4%	10.5%
Calls not served	-42.7%%	-35.0%	-31.5%

^{*}Measured using simulation on independent data, for a period of one month

Bounds with abandonment

Result: Optimality gap remains similar in the case of abandonment => 'close' to optimal

Solutions with abandonment

Result: Improvements with respect to all metrics

Opportunity cost of abandonment

- Abandoned calls add inefficiency to the system
- Ambulance could have served another customer (with a better service level)
- How much is lost due to abandoned calls?
 - Find optimal allocation when abandoned calls existed
 - Remove abandoned calls and measure impact of optimal allocation
- 12% calls abandoned in data set
 - ~6% improvement when abandoned calls ignored
 - Remaining 6% of calls do not reduce service level

Opportunity Cost of Abandonment

Takeaways

- Static allocation provides good results compared to baseline operations.
- More repositioning makes more ambulances available where needed; covers requests better
 - Reposition often if idle travel cost is low
- Greedy algorithm is quick, particularly for dynamic redeployment (<~10s)
- Solutions from our algorithm are robust
- Opportunity cost of abandonment is about 50% that of fraction of abandoned calls

Talk outline

- Ground Realities for EMS in Emerging Economies
- Data-driven Simulation
- Mathematical Formulations
- Results
- Ongoing and Future Work

New/needed technology: Traffic models

- Existing routes
 - Currently use data-driven models for traffic congestion capture
 - Allows to extrapolate data for routes taken in past
- New routes?
 - Crowdsource/obtain traffic information from other ambulances
 - Communication between ambulances to share traffic data

New/needed technology: Human behavior models

- 'Conflict' between existing ad-hoc networks and the operator's network
- Customer calls multiple service providers

- Choose the one which arrives first
- Modeled higher abandonment in select urban areas
- How to improve ambulance utilization?
 - Better dispatching models?
- What system can lead to improved social welfare?

Robust and Dynamic Approaches for Evolving Infrastructure

THANK YOU!

