MULTIDIMENSIONAL NETWORK ANALYSIS OF CUSTOMER PREFERENCES IN ENGINEERING DESIGN

Wei Chen^a | Mingxian Wang^c | Zhenghui Sha^a | Sophia Fu^b Yun Huang^b | Noshir S. Contractor^b | Yan Fu^c

Integrated DEsign Automation Laboratory (IDEAL)

a Department of Mechanical Engineering, Northwestern University b Science of Networks in Communities, Northwestern University c Global Data Insight & Analytics, Ford Motor Company

Northwestern ENGINEERING

Complex Sociotechnical Systems

Costanter Arsportations to presen

(Image source/intage/sources.dotvgovio/maligeo.ga)llery/image36.htm)

Analyzing Customer Preferences

Decision-making behaviors

- The co-consideration behavior
- The choice behavior

Decision-making factors

- Products' attributes, e.g., color, price, etc.
- Demographics, e.g., age, income, etc.
- Usage context; Policy and incentives
- Social influence

Why it is important?

- Support design decisions
- Understand market for strategic planning
- Set right incentives

Modeling Customer Preferences

Decision-based Enterprise-Driven Design

(Chen, Hoyle, Wassenaar, 2013 Springer)

Wei Chen · Christopher Hoyle Henk Jan Wassenaar

Decision-Based Design

Integrating Consumer Preferences into Engineering Design

Discrete Choice Analysis (DCA), rooted in econometrics, used to estimate consumer choice among competing products.

Limitations of Discrete Choice Analysis (DAC)

- Choice set needs to be prespecified
- Independence of Irrelevant Alternative (IIA) assumption
- Rationality assumption (independent decision maker)

• Vulnerable to attributes collinearity

Fundamentals of Network Analysis

Network Structure Analysis

Nodes: individual entities, e.g., customers, vehicles, etc.

Links: complex relations, e.g., social interaction, choice behavior, co-consideration, etc.

Graph: the system structure, e.g., the customer-product systems

Effective in modeling the *interconnectivity* and *interdependency* among individual entities.

Advance of Network Models

Multidimensional Customer-Product Network

Multitheoretical multilevel (MTML) framework

(Monge and Contractor, 2003)

- Self-interest
- collective action
- social exchange
- balance
- homophily
- proximity
- contagion
- co-evolution
- etc.

Wang, M., Huang, Y., Contractor, N., Fu, Y., and Chen, W., "Modeling Customer Preferences using Multidimensional Network Analysis in Engineering Design", *Design Science*, 2016.

Research Topics and Methods

Annual Passenger Car Sales in China (Unit: One million) 24

Compound annual growth rate in percentage

- Regional differences
- Diverse preferences
- Intense competitions
- Social Influences

Market facts:

- China surpassed US to become the No.1 auto market in 2010.
- China is expected to exceed North America and Europe to become the No.1 area market in 2020.

New Car Buyers Survey (NCBS) 2013

- ~ 50,000 respondents
- 389 vehicles
- 872 variables

Covered factors

- Purchased vehicle
- Considered alternative vehicles
- Previous owned vehicle
- Vehicle attributes (e.g., body type, engine power)
- Demographics (e.g., age, income)
- Use patterns (e.g., average km per day)
- Perceived vehicle characteristics (e.g., youthful, reliable)

2013 Mainland China, 54 cities in 30 provinces

Product Association Network

NETWORK LINK

- Undirected, link strength
- Co-consideration

CENTRALITY (SIZE)

- Identify hubs
- Imply consideration range

COMMUNITIES (COLOR)

- Detect group of products with strong connections
- Imply market segment and aggregated consideration set

Vehicle Hierarchical Network

NETWORK LINK

- Directed, valued
- Co-consideration
- Purchase preference

NODE HIERARCHY (SIZE)

- Identify winner products in pair-wise evaluations
- Imply product competitiveness under co-consideration

consideration & purchase data

Inidimensional Vehicle Network based on Costumers' Co-Considerations

Evaluation Metric

$$lift = \frac{P(i \cap j)}{P(i) \cdot p(j)}$$

Link Generation

$$Edge(i,j) = \begin{cases} 1, & if \ lift \ (i,j) > cutoff \\ 0, & otherwise \end{cases}$$

 A vehicle network that connects the co-considerations of cars (2013 data)

> Mondeo(37) > Old Focus(32) > Explorer(22) > S-max(13)

Joint Correspondence Analysis (JCA)

Identify key attributes drivers to the formation of network communities

JCA of Vehicles and Demographics

WHAT CUSTOMER DEMOGRAPHICS EXPLAIN PRODUCT COMMUNITIES?

JCA of Vehicles and Perceived Vehicle Char.

Multiple Regression Quadratic Assignment Procedures

Model Configuration and Network Effect

Wang, M., Huang, Y., Contractor, N., Fu, Y., and Chen, W., "A Network Approach for Understanding and Analyzing Product Co-Consideration Relations in Engineering Design", *International Design Conference – Design 2016*, Dubrovnik, Croatia.

MRQAP Network Modeling Results

Forecast Technological Impacts

Design Scenario: Improve fuel economy

Wang, M., Sha, Z., Huang, Y., Contractor, N., Fu, Y., and Chen, W., "Forecasting Technological Impacts on Customers' Co-Consideration Behaviors: A Data-Driven Network Analysis Approach", IDETC2016-60015, Proceedings of the ASME 2016 International Design Engineering Technical Conferences & Design Automation Conference, August 21-24, Charlotte, NC.

 $\operatorname{logit}(P_{\theta}\{Y_{ij}=1\}) = \boldsymbol{\beta}^{\mathrm{T}} \mathbf{x}_{ij}$

MRQAP:

Comparative Study on Network Models

Exponential Random Graph Model

Exponential Random Graph Model (ERGM)

Modeling Heterogeneity

Structural features of interest !

$P_{\theta}(\mathbf{Y} = \mathbf{y}) = \frac{1}{2}$	$\frac{1}{c(\boldsymbol{\theta})}\exp\{\boldsymbol{\theta}^{T}\mathbf{x}(\mathbf{y})\}$
---	---

	Attributes of nodes	Heterogeneity in – Customer income, age, etc. – Product price, performance, etc.		
	Attributes of links	Heterogeneity in		
		- Time duration	Whether a car is co-	o-considered
	Network Configurations	Degree distributions (or	stars)	
Whether thre considered w (three-way co	e cars are co- vith each other ompetition)	Cycle distributions (2, 3	, 4, etc.) ions	Whether two cars are co- considered with many other two
				cars

Model Results

Insights from ERGM Model

Vehicle Attribute Network

IDEAL

Models Evaluation – Spectral Goodness of Fit (SGOF)

1000 simulations	MRQAP	ERGM
Spectral Goodness of Fit [Jesse Shore, Benjamin Lubin, 2015]	0.35 (5th, 95th quantiles: 0.28, 0.42)	0.69 (5th, 95th quintiles: 0.60, 0.76) 0.67 (5th, 95th quintiles: 0.54, 0.78) (2M burn-in)

explained by a fitted model.

Modeling Social Influence

$$P_{\theta}(\mathbf{Y} = \mathbf{y}) = \frac{1}{c(\theta)} \exp\{\theta^{\mathsf{T}} \mathbf{x}(\mathbf{y})\}$$

Peer effect	Customers tend to choose the product that their "peers" recommended, either through use or discussion.
Crowd effect	When comparing two products under consideration, a customer is more likely to choose the one favored by majority of customers.

Luxury Vehicle Preferences in Central China

Created by vehicle features and attributes Defined by consideration decisions in survey data

Simulated using the small-world network model

ERGM Modeling Results

		Only attribute effects	Structura effects add	I Social i ed effect	nfluence added
 •	Effects	Мос	lel 1 Model	2 Model 3	
	Pure structural effects				
	• Density	-7.03	314* -9.100	9* -8.9648*	1
	Product popularity		6.4955	5* 6.5123*]
	Consideration range		-1.403	6* -1.3199*	
	Attribute-relation main e	effect			
	Price	-0.03	346* -0.019	-0.0182	1
	Turbocharger dummy	1.27	96* 1.0617	7* 0.9056*	1
	Engine capacity	0.28	0.2356	6* 0.1871	
	Fuel consumption	0.15	81* 0.1270	0* 0.1162*	
□●	First-time buyer dummy	-0.23	343* -0.974	5* -0.9744*	
_ L	Income	0.0	0.010	2 0.0125*	
	Cross-level effects				
	 Customer consider simila 	r products	0.9930)* 0.9704*	1
	Peer influence in conside	ration		0.4524*	1
ď	Model Fit]
	AIC	51	48 4851	4795	1
	BIC	52	05 4932	4884	
	 Peer influence in conside Model Fit AIC BIC 	ration 51 52	48 4851 05 4932	0.4524* 4795 4884	

Research Contributions

- Employed descriptive network analysis to provide visualization of structure features of vehicle co-consideration relations and identified key vehicle attributes drivers.
- Employed network models to study the impact of similarity and differences of product features on vehicle co-considerations.
- Illustrated the use of network models to predict the impact of different technologies on vehicle competition.
- Compared different networking modeling techniques
- Established a multidimensional network framework for modeling consumer consideration by taking account both product association and social influence.

On-Going: Two Stage Consideration-then-Choice Models

Previous Approaches

Scenario 1: one-stage choice model assuming customers make decisions among all possible products.

Scenario 2: two-stage choice model assuming each customer makes decisions from a subset of products which is unknown to researchers.

Scenario 3: two-stage choice model assuming each customer considers a subset of products first and makes final decisions from it. Researchers have access to both consideration set and the final choices data.

Proposed Approach

- Possible alternative
- Consideration
 - Product choice

Applying Bi-partite ERG Modeling

	Stage 2- Purchase consideration	Stage 1- Consideration
Edges	14.90**	-10.53**
Market distribution	-3.83**	-4.11**
Price	-0.36	0.30**
Fuel consumption	0.40**	-0.16**
Make origin (US)	-0.84**	0.88**
Make origin (Europe)	-0.33	0.83**
Make origin (Japan)	-0.29	0.00
Make origin (Korea)	-0.50*	0.14
External styling	-1.27**	0.23**
Turbo	0.67**	-1.19**
All wheel drive (AWD)	-1.66**	-0.32**
Auto transmission	-0.48	-0.53**

Key Insights

- Network effect: skewed market distribution
- Important factors: Price, fuel consumption, make origin, external styling, Turbo, AWD, autotrans
- Different processes during first stage and second stage manifested in the sign change of coefficients

** *p* < .01; * *p* < .05

On-going: Multi-year Network Evolvement

	Regular Vehicles (2013 2014)		Premium vehicles (2013 2014)	
Number of vehicles	289	302	100	101
Average degree (co-consideration)	23.63	22.48	28.94	33.33
Average cluster coefficient (three-way	0.252	0.197	0.38	0.33
competition)				

Observation 1: The size of network increases → more premium vehicles and more co-considerations on premium vehicles

Observation 2: Average cluster coefficient decreased \rightarrow Three-way competition is less frequent in premium vehicles market in 2014 as compared to 2013.

On-going: Spatiotemporal Analytic Modeling for Customer Purchase

The incorporation of dependence in both time and space dimensions.

Thank You

