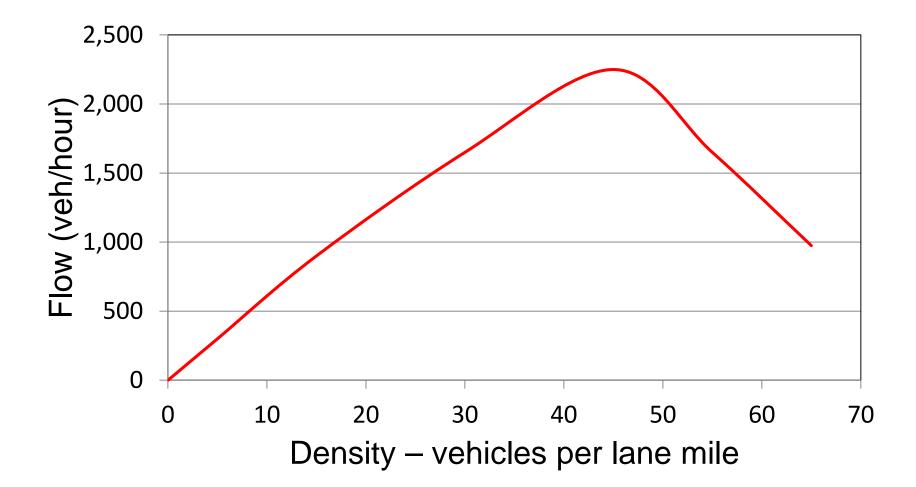


Northwestern | Economics

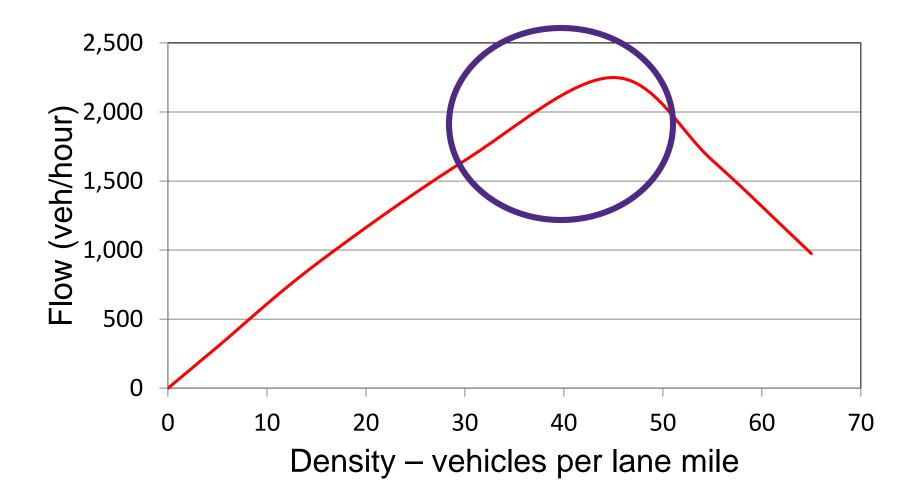
Anticipatory Pricing to Manage "Flow Breakdown"

Jonathan D. Hall University of Toronto and Ian Savage Northwestern University • Flow = density x speed

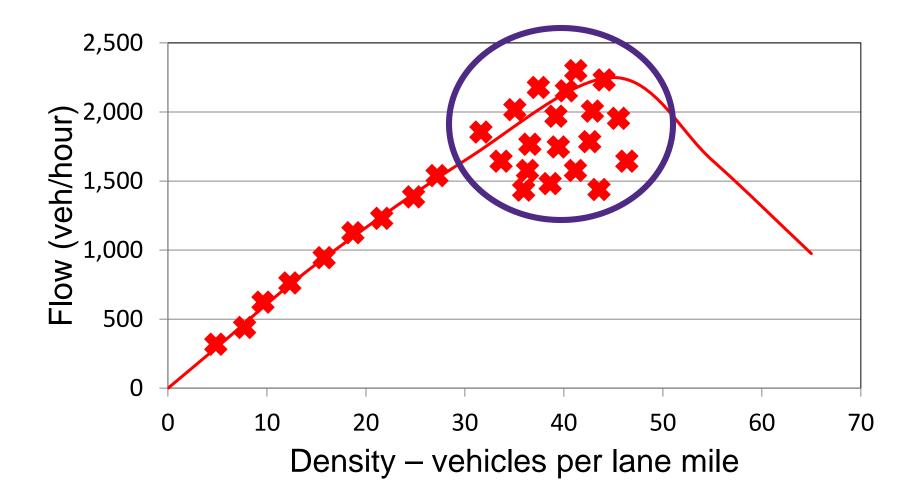
Fundamental diagram of traffic



Fundamental diagram of traffic



"Flow Breakdown"



Causes

- Weaving between lanes
- Excessively slow vehicles
- Aggressive driving
- Sharp brakeing
- Unusual weather
- Unusual visual distraction

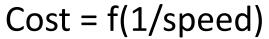
Features

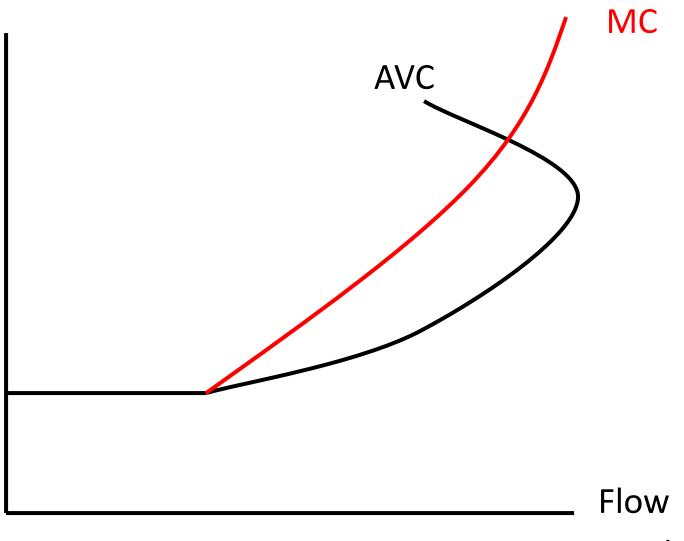
- Does not occur everyday (probabilistic)
- Precursor action more likely to result in breakdown at higher densities/flows
- Occurs when highway is operating at less than theoretical capacity

What it is not

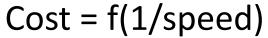
- Backup caused by a downstream bottleneck now affecting this link
- Random traffic crashes that close some or all lanes
- Oversaturation of the link

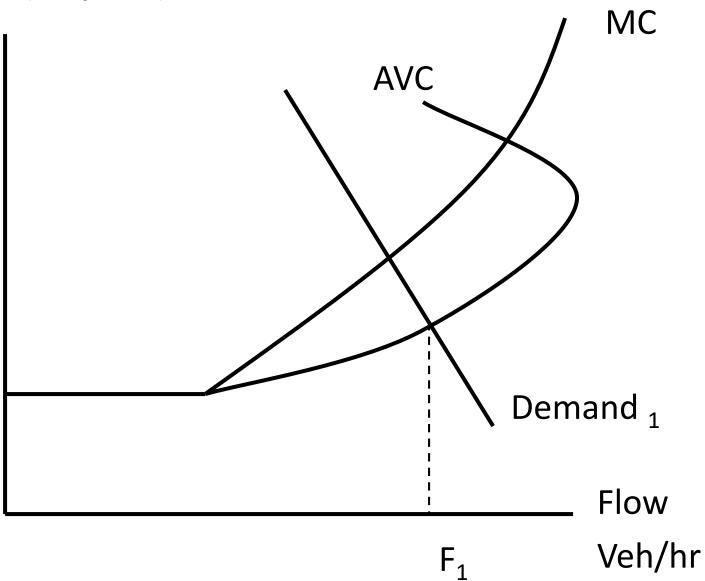
- Flow less than maximum capacity:
 - "normal congestion" (economists)
 - "undersaturated" (engineer)
- Has stable density/speed/flow relationship

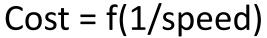


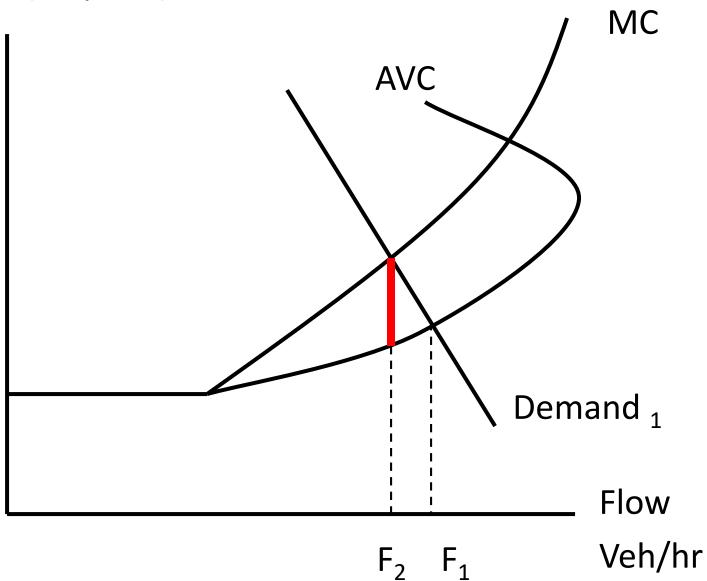


Veh/hr









- (In)flow greater than maximum capacity:
 - "hypercongested" (economists)
 - "oversaturated" (engineer)
- "Bottleneck" model
 - Dates to Vickrey in the 1960s
 - Modern version started with Arnott, De Palma and Lindsey, 1990

- Bottleneck of fixed capacity
- If inflow to bottleneck exceeds capacity, then a queue develops
- Drivers suffer a travel time penalty in the queue

- Bottleneck of fixed capacity
- If inflow to bottleneck exceeds capacity, then a queue develops
- Drivers suffer a travel time penalty in the queue
- Drivers endogenously select their departure time from "home" (discussed in a minute)
- May arrive at "work" earlier or later than they would like (disutility from this variation)

- Bottleneck of fixed capacity
- If inflow to bottleneck exceeds capacity, then a queue develops
- Drivers suffer a travel time penalty in the queue
- Drivers endogenously select their departure time from "home" (discussed in a minute)
- May arrive at "work" earlier or later than they would like (disutility from this variation)
- Introduction of pricing shortens smooths inflow and makes drivers better off

Our objective

- Adapt the bottleneck model to deal with situations where the equilibrium flow is less than theoretical capacity:
 - "Good days" when drivers encounter no congestion
 - "Bad days" when breakdown occurs (a bottleneck become binding) and drivers encounter congestion in the form of a queue
- Make the probability of a "bad day" endogenous

How are you going to price?

- Option 1 real time dynamic ex-post pricing to help highway recover on "bad days"
 - Need alternative routes
 - And/or people delay or not make trips or change mode

How are you going to price?

- Option 1 real time dynamic ex-post pricing to help highway recover on "bad days"
 - Need alternative routes
 - And/or people delay or not make trips or change mode
- Option 1A upstream sensors and traffic prediction models guess if and where breakdown is likely and price accordingly – Dong and Mahmassani (2013)

How are you going to price?

- Option 2 Anticipatory pricing:
 - Same price on both good and bad days
 - Price set in advance so drivers know it in making departure time decisions
 - Drivers know in advance how traffic performs on both good and bad days
 - Drivers know the endogenous probability of a bad day
 - Hence choose their departure time from home

THE MODEL

Simplifications

- Morning peak
- Fixed "totally inelastic" number of commuters (Q) in single-occupancy cars
- Homogenous drivers (same utility function and tastes)
- Same desired arrival time at work (t*)

Simplifications

- Single link between "home" and "work"
- "Home" is located immediately before a possible bottleneck
- "Work" is located immediately after the bottleneck
- So, free-flow travel time and vehicle operating costs are normalized to zero

Highway technology

- (Out)flow capacity of the bottleneck in nonbreakdown state (V_K) is not binding on inflow V_a(t) for any value of t on a good day
- If breakdown occurs, capacity falls to $V_{K'}$ which is binding on $V_a(t)$ for at least some values of t
- Then a vertical queue develops
- Highway remains in breakdown state until queue totally dissipates, then it resets

Probability of breakdown

Probability of Breakdown

1

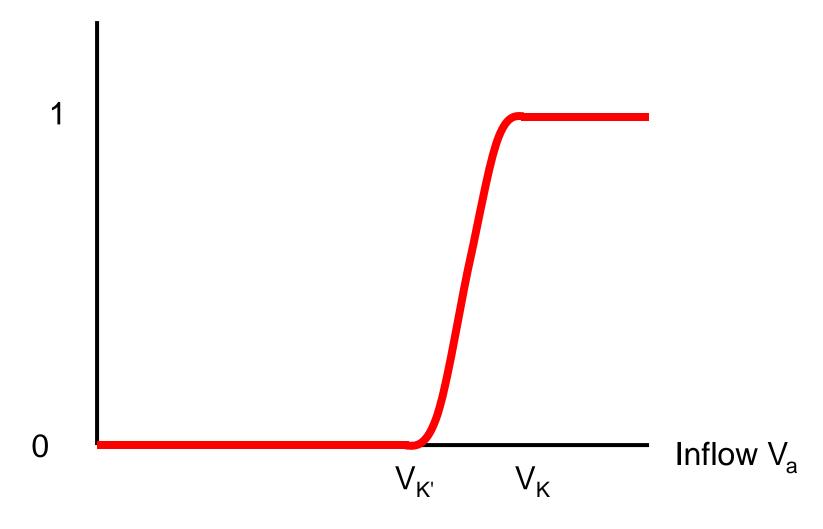
 \mathbf{O}



Inflow V_a

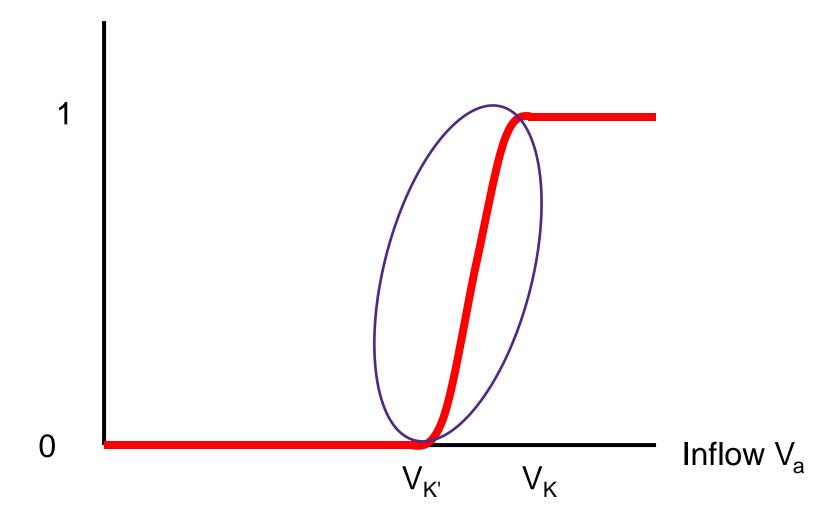
Probability of breakdown

Probability of Breakdown



Probability of breakdown

Probability of Breakdown



When does breakdown occur?

- We will show that inflow V_a(t) is highest earlier in the peak period
- Breakdown probability based on this maximum inflow
- If breakdown occurs at all, it happens immediately at the start of the peak
- Random drawing each morning based on endogenous probability
- Because on a bad day the queue does not dissipate until the end of peak, cannot have highway "recover" and then face possibility of relapse into breakdown
- So breakdown either at beginning of peak or not at all

Driver decision making

- All desire to get to work at t*
- Chose departure time from home in continuous time t
- Departure time can be earlier than, same as, or later than t*
- Objective is to minimize disutility (generalized cost) of their trip
- Equilibrium conditions:
 - No driver can shift departure time to improve their welfare
 - (implies that all drivers face same generalized cost)
 - Everyone who leaves home gets to work!

Generalized cost

- Some things normalized to zero
 - Free-flow travel time
 - Vehicle operating costs
- 1. Travel time delay (time in queue) valued at α
 - Note that on "good day" travel delay is zero
- 2. Schedule delay work arrival time relative to t*
 - if arrive at work early valued at $\boldsymbol{\beta}$
 - if arrive at work late valued at $\boldsymbol{\gamma}$
 - usual assumption that $\beta < \alpha < \gamma$
- 3. Time-varying toll τ(t)

NO-TOLL BASE CASE

Three groups of commuters

• Early: arrive at work early or exactly "on time" on both good and bad days

Early commuters

$$\begin{split} c_{g}(t) &= p(V_{a}^{\text{ early}}) \left\{ \alpha T_{DB}(t) + \beta \left[t^{*} - (t + T_{DB}(t)) \right] \right\} \\ &+ \left[1 - p(V_{a}^{\text{ early}}) \right] \beta \left(t^{*} - t \right) \end{split}$$

Early commuters $c_{g}(t) = p(V_{a}^{early}) \{ \alpha T_{DB}(t) + \beta [t^{*} - (t + T_{DB}(t))] \}$ $+ [1 - p(V_{a}^{early})] \beta (t^{*} - t)$

Solve by: $\frac{\partial c_g(t)}{\partial t} = 0$

$$\frac{\partial T_{DB}(t)}{\partial t} = \frac{V_a^{early}}{V_{K'}} - 1$$

Early commuters

$$V_{a}^{early} = \left[\frac{\beta}{p(V_{a}^{early})(\alpha - \beta)} + 1\right] V_{K'}$$

Three groups of commuters

- Early: arrive at work early or exactly "on time" on both good and bad days
- Middle: arrive at work early or exactly on time on good days and late on bad days

Middle commuters

$$\begin{split} c_{g}(t) &= p(V_{a}^{\text{ early}}) \left\{ \alpha T_{DB}(t) + \gamma \left[t + T_{DB}(t) - t^{*} \right] \right\} \\ &+ \left[1 - p(V_{a}^{\text{ early}}) \right] \beta \left(t^{*} - t \right) \end{split}$$

Solve in similar fashion

Middle commuters

$$= \begin{bmatrix} \left(1 - p(V_a^{early})\right)\beta - p(V_a^{early})\gamma \\ p(V_a^{early})(\alpha + \gamma) \end{bmatrix} V_{K'}$$

•
$$V_a^{\text{middle}} < V_a^{\text{early}}$$

Three groups of commuters

- Early: arrive at work early or exactly "on time" on both good and bad days
- Middle: arrive at work early or exactly on time on good days and late on bad days
- Late: arrive at work late on both good and bad days

Late commuters

$$\begin{split} c_{g}(t) &= p(V_{a}^{\text{ early}}) \left\{ \alpha T_{DB}(t) + \gamma \left[t + T_{DB}(t) - t^{*} \right] \right\} \\ &+ \left[1 - p(V_{a}^{\text{ early}}) \right] \gamma \left(t - t^{*} \right) \end{split}$$

Solve in similar fashion

Late commuters

$$V_a^{late} = \left[\frac{-\gamma}{p(V_a^{early})(\alpha + \gamma)} + 1\right] V_{K'}$$

$$\bigvee \text{ late } \bigvee \text{ middle } \bigvee \text{ early}$$

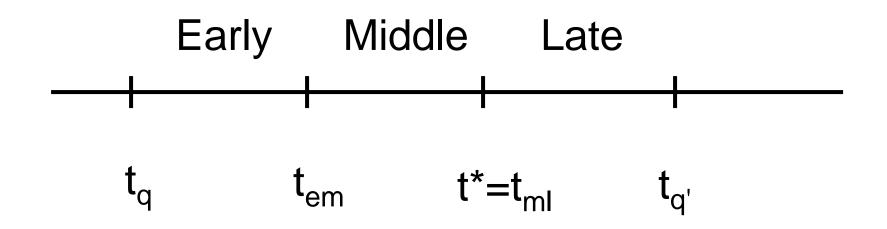
•
$$V_a^{\text{late}} < V_a^{\text{middle}} < V_a^{\text{early}}$$

• $V_a^{\text{late}} < V_{K'}$

The model

- Predetermined parameters: Q, α , β , γ , V_K, V_{K'}, distribution of p(V_a^{early})
- Just determined: V_a^{early}, V_a^{middle}, V_a^{late}
- Still to be determined:
 - t_q = departure time of earliest commuter
 - t_{em} = break point between early and middle group
 - $-(t_{ml} = t^* = break point between middle and late group)$
 - $t_{q'}$ = departure time of the last commuter
 - Qearly, Qmiddle, Qlate

Time line (not to scale)



Can define a system of linear equations to solve for these

$$t_q = t^* - \frac{Q}{\left[1 + \frac{V_a^{middle}}{V_a^{late} - V_{K'}} \left(\frac{V_{K'}}{V_a^{early}} - 1\right)\right] V_{K'}}$$
$$t_{em} = \frac{V_{K'}}{V_a^{early}} t^* + \left(1 - \frac{V_{K'}}{V_a^{early}}\right) t_q$$

Can define a system of linear equations to solve for these

$$T_{DB}(t^*) = \frac{V_a^{middle}}{V_{K'}} t^* - \frac{V_a^{middle}}{V_{K'}} t_{em}$$

$$t_{q'} = t^* - \frac{V_{K'}}{V_a^{late} - V_{K'}} T_{DB}(t^*)$$

Q^{early}, Q^{middle}, Q^{late} follow from these

OPTIMAL FINE TOLLS

The standard bottleneck model

- When inflow > capacity even on a good day
- Set price schedule so there is a constant inflow equivalent to the bottleneck capacity (no queuing)
- For each driver the combined:
 - travel delay (eliminated by pricing)
 - schedule delay early or late
 - toll paid

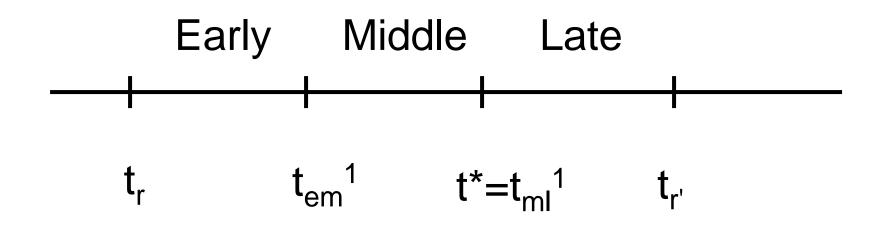
is the same (i.e, the less the schedule delay, the higher the toll)

In our model

• Set price schedule to regulate inflow so it a constant rate equivalent to the maximum expected bottleneck capacity

$$V_a^1 = \max\{[1 - p(V_a)]V_a + p(V_a)V_{K'}\}$$

New time line (not to scale)



Solving the model

- Both the very first (at t_r) and very last driver (at t_r) pay zero toll, but suffer:
 - Schedule delay early and zero traffic delay (on both good and bad days) for first driver
 - Schedule delay late and a queue (on bad days) for last driver
 - These must be the same in equilibrium, denote as δ^1

Solving the model

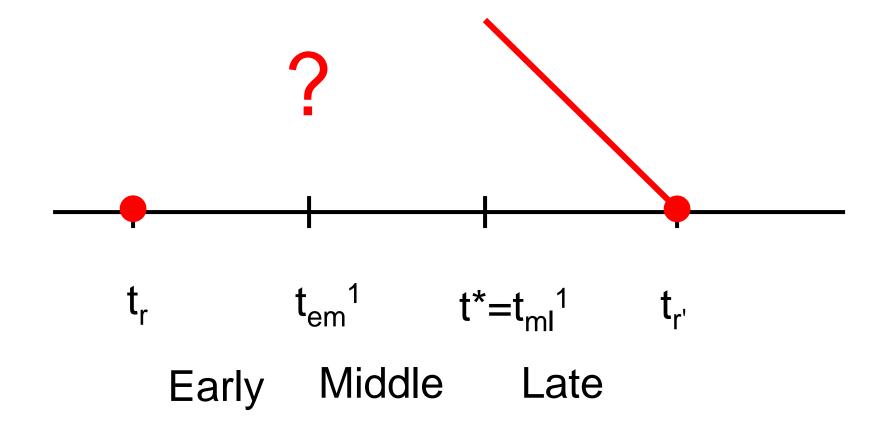
• For first driver:

$$\delta^{1} = c_{g}(t_{r}) = \beta(t^{*} - t_{r})$$
$$= \beta Q \left\{ \frac{\gamma + p(V_{a}^{1}) \left[(\alpha + \gamma) \left(\frac{V_{a}^{1}}{V_{K'}} - 1 \right) \right]}{(\beta + \gamma) V_{a}^{1}} \right\}$$

- Set toll schedule to increases the travel delay and schedule delay for all drivers to δ^1

Optimal toll schedule $\tau(t)$ Early: $t_r \leq t \leq t_{em}^{-1}$ $\delta^{1} - \beta(t^{*}-t) - p(V_{a}^{1}) \{ (\alpha - \beta)[(V_{a}^{1} / V_{\kappa'}) - 1](t-t_{r}) \}$ Middle: $t_{em}^{1} < t \leq t^{*}$ $δ^1 - [1 - p(V_a^1)] β(t^*-t) - p(V_a^1) γ(t-t^*)$ $- p(V_a^1)(\alpha + \gamma)[(V_a^1 / V_{\kappa'}) - 1](t-t_r)$ Late: $t^* < t < t_{r'}$ $\delta^{1} - \gamma(t-t^{*}) + p(V_{a}^{1})(\alpha+\gamma)[(V_{a}^{1} / V_{\kappa'}) - 1](t-t_{r})$

Toll schedule (not to scale)



Possible extensions

- Rather than at the start of the peak, breakdown may occur randomly within the peak
- Number of commuters (Q) is elastic
- Highway congestible (travel time increases with flow) even in a non-breakdown state
- Second best coarse toll

FINAL THOUGHTS

Summary and final thoughts

- Model with endogenous breakdown probability
- Get day-to-day travel time variability without stochastic demand
- Model describes reality where you are generally early or on time but occasionally late
- Applicable if departure time precommitted

Thank you

• Ian Savage: ipsavage@northwestern.edu

• Read the draft paper:

http://faculty.wcas.northwestern.edu/~ipsavage/440-manuscript.pdf

Preliminary and incomplete, please do not cite