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Abstract: Theoretical analyses of a set of iterated-tour partitioning vehicle routing algorithms applicable
to a wide variety of commonly-used vehicle routing problem variants are presented. We analyze the worst-
case performance of the algorithms and establish tightness of the derived bounds. Among other variants we
capture the cases of pick-up and delivery, and multiple depots. We also introduce brand new concepts such
as mobile depots, partitioning of customer nodes into groups, and potential opportunistic under-utilization
of vehicle capacity by only partially loading the vehicle, among others, which arise from a printed circuit
board application. The problems studied are of critical importance in many practical applications.
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1 Introduction

Logistics in today’s increasingly global economies has become a more important field than ever before. Even
though logistics in itself has a very significant business impact, nevertheless, the breadth of applications of
vehicle routing goes well beyond the traditional trucking industry. Vehicle routing algorithms play an im-
portant role in vehicle routing related information systems. Theoretical analyses of vehicle routing problems
have led to significant insights into the nature and complexity of the proposed algorithms and they help in
better understanding the potentials and limitations of such algorithms.

A novel and recent area of applications of vehicle routing is production planning of printed circuit board
assembly on an automated (primarily surface-mount type) equipment, for example, on the collect-and-place
or pick-and-place type machines [25]. More specifically, collect-and-place machines are typically used for high-
volume, high-flexibility production and are becoming increasingly popular in industrial settings because of
their inherently advantageous characteristics and capabilities. The placement sequencing problem, i.e., the
problem of planning the pick-up and delivery of electronic components or chips from feeder trays on the side
of the machine onto a bare printed circuit board (PCB) in the center on such machines is an NP-hard problem
that turns out to be essentially a generalization of the vehicle routing problem (VRP) in several different
dimensions. Several interesting variants appear based on the manufacturing scenario and configuration of the
machine, which are generalizations of many well-known and standard vehicle routing problem variants that
have been studied in the past. Thus, existing algorithms and research do not directly apply to the problems
motivated by the PCB context, but they are interesting generalizations of many important standard VRP
variants, and hence a study of these problems is of great value.

PCB manufacturing plays a very important role in today’s economy. Global revenues for the PCB
industry exceeded $50 billion in 2007 and are expected to reach more than $76 billion in 2012 [20]. A
PCB is a flat board that carries the chips and various other electronic components. This board is made
up of alternating layers of copper and plastic, with the etching process performed on the copper layers to
provide interconnects. These boards are capable of holding several components depending on the required
specifications and produce complex interconnections. PCBs can be of different sizes and varying densities
and are manufactured in automated assembly lines where high-speed placement machines put components
on the boards. A line can assemble components on multiple types of PCBs and it has one or several high
speed machines to perform the actual placement of operations [24]. The assembly of PCBs is a complex
process involving the placement of hundreds (even up to a thousand or more) of electronic components in
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different shapes and sizes at specific locations on the board. These assembly lines, and more specifically,
collect-and-place machines (see Figure 1) form the bottleneck in production, thus even small savings in total
assembly time can significantly improve the bottom-line.

These machines have one or more rotary heads (see Figure 3) that work in tandem to pick up components
or chips from a feeder tray (or an array of feeder slots each feeding one particular type of component) and
deliver them to specific locations on the bare circuit board as dictated by the specific design requirements
(illustrated in Figure 2). Each rotary head contains typically between 5 to 20 spindles, or placeholders for
the chips, thus limiting the capacity of the “vehicle”. There are additional complicating manufacturing
constraints and specifications that make the problem much more complex and harder to solve than just a
basic vehicle routing problem.

Figure 1: A collect-and-place machine

In this paper we study the placement sequencing problem on a single machine processing a single board
at a time with a single machine head. We assume that the arrangement of components or chips on the
feeder magazine is given, i.e., the supply characteristics of each depot are fixed beforehand, which is an
assumption frequently used in the PCB literature. Under these specific constraints posed by the scoped
configuration of the machine, the placement sequencing problem is very similar to a complex, yet striking
version of the vehicle routing problem with a single capacitated vehicle (in our case, the rotational robotic
head with multiple spindles loaded onto a dual gantry) performing multiple trips from the depot (in our
case, the feeder magazine) to satisfy customer demand (in our case, the design requirements for the board
being populated, stipulating the specific component type to be inserted at each placement location).

As already alluded to, the problem in its general form in the given setting captures many important VRP
variants. The first major difference from all standard VRP variants is the introduction of a moving depot
that utilizes the time that vehicle is away to reposition itself to a more advantageous location. Thus, classical
VRP is a special case when the depot movement velocity is fixed to zero. The second major extension lies in
the generalization of the underlying network to use groups of customer locations, only one location in each
pre-defined group needs to be visited by the vehicle. Such problems have been commonly studied in the
context of the traveling salesman problem (TSP) where they are known as generalized TSP (GTSP) [12],
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Figure 2: A schematic of the collect-and-place machine
[11]

Figure 3: Detailed view of a rotary collect-and-place
head [26]

[9], but not so much in the VRP context even though they have several important practical applications.
Apart from these differences, in the modeled problem, if we consider only one possible pick-up and delivery
point for each type of a component, the problem essentially becomes a static dial-a-ride problem in which
all requests for transportation are known at the beginning. This scenario can also be analyzed as a vehicle
routing problem with pick-up and delivery since there are no extra side-constraints typically found in the
dial-a-ride problem. To this scenario, if we further add the restriction that all pick-ups precede all drop-offs
in a route, it can be seen that the problem reduces to a vehicle routing problem with backhauls type scenario.
If we further simplify the problem and assume only one component type, i.e., a single commodity problem,
we get the standard multi-depot vehicle routing problem. Finally, if we assume a single pick-up point for all
components in addition to the previous simplifications, we end up with the standard capacitated VRP.

Other interesting VRP variants that have not been studied in literature ever before also arise as special
cases, for instance, the VRP with moving depots and the generalized VRP (GVRP), which is an extension
of the VRP with an underlying GTSP replacing the standard TSP. A GVRP is a VRP where the underlying
network of customers is a GTSP, i.e., there are clusters of customer locations and the vehicle needs to only
visit one location in each cluster. The GVRP is a very interesting problem for all automation and robotics
related applications and a well-designed algorithm could lead to potentially large savings in such situations.

Besides the above-mentioned importances of this problem in the PCB assembly planning context, and its
value in studying and deriving bounds for important VRP variants, this problem also is of striking similarity
and crucial importance to related research areas including, but not limited to, seaport container problems for
ship loading and unloading [28], point-to-point motion planning of robots [17] used in automated assembly
lines and for operations such as painting and welding, warehouse operations [31] utilizing automated storage
and retrieval systems [23] requiring the routing of autonomous guided vehicles [3], which are also used
as an integral part of flexible manufacturing systems [27], and hard disk drive data retrieval and storage
optimization problems [22].

1.1 Contributions and Outline

This paper presents analyses of advanced iterated-tour partitioning algorithms for generalized vehicle routing
problems, which encompass many standard versions of the VRP and extend them to a generalized setting
with the ability to deal with groups of customer sites and a maximum attribute arising in the objective
function as a result of mobile depots.

The iterated tour partitioning heuristic (ITP) in the standard VRP setting finds a TSP tour in the
network and then traverses the tour. Each time the truck following the tour delivers all loaded items, it
detours from the tour by going to the close-by depot, picks up new items, and returns back to the tour at
the next node on the tour. We generalize this heuristic to accomodate our settings. In the most general
case, we set up an auxiliary network based on the computed TSP and the final solution consists of finding
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a shortest path on this auxiliary network.
The most striking and unique feature of our problem is the notion of moving depots. Another innovative

feature of our model is the pick-up and delivery aspect. It turns out that this can be modeled on a network
with only customer nodes without explicitly modeling depot nodes by using two arc weights (one capturing
the cost of the movement of the vehicle and the other one reflecting the cost of pick-ups). The cost of a
VRP solution is the combination of these two arcs on the routes. We call such a network the generalized
and expanded 2-cost edge network. Two arcs per pair of nodes are sufficient if each ‘truck’ must leave fully
loaded. If this condition is relaxed, we need more than two arcs between two nodes and the resulting network
is termed the generalized and expanded multi-cost edge network.

The second major contribution is the extension of the standard vehicle routing problem into the gener-
alized setting wherein the vehicle needs to visit only one customer in each pre-defined set of customers.

These models provide the underlying framework we use to derive a generalized ITP heuristic that covers
the variants examined. We present tight approximation ratios for the ITP heuristics for

� the generalized full-load case, in which the vehicles are assumed to always run on a full-load and return
empty to the depot,

� the generalized partial-load case, in which vehicles are allowed to carry only as much as they intend to
deliver on a given route,

� and, the generalized partial-load case with waiting cost, in which an additional cost component is
present in the objective function to capture moving depots.

In analyzing the algorithms, we use a unique lower bounding procedure based on the structure of the
optimal solutions to such problems coupled with an upper bound derived from ITP. To do so in a more general
context, we need to define q auxillary networks with cost structures deduced from the original problem. The
entire analysis and the heuristics are based on the multi-cost network.

Our contributions first lie in the development of the modeling framework. The novel idea of introducing
multi-cost networks to model pick-up operations is an important contribution towards a unified framework.
Second, we provide approximation and tightness analyses for our ITP-heuristics for the generalization of
standard VRP scenarios, specifically the vehicle routing problem with pick-up and delivery. Another impor-
tant contribution is the new and novel generalization of the heuristic. We generalize the problem to solve
it on groups of customer sites only one of which needs to be visited by a vehicle rather than individual
customers all of which must be on the vehicle’s route. Furthermore, we allow for multiple depots, each of
which is capable of moving when not replenishing a vehicle leading to the introduction of a waiting cost.
And finally, we generalize the standard VRP scenario to exploit opportunities where under-utilization of the
vehicle’s capacity in the short-term leads to shorter routes. One of the major accomplishments of our work
is to keep the problem general and present a unified model so that approximation ratios for well-known VRP
variants (for many of which there does not exist any theorectical analysis so far) can easily be reduced from
our model.

The paper is structured as follows. We first finish the introduction with a literature review. Section
2 provides a broad overview of the problem, including the variants of the problem addressed in this work,
and those that can be directly reduced from them. In Section 3, we present the ITP-heuristic and develop
approximation ratios for each of the above-mentioned three scenarios. Tightness of the derived ratios is also
proven.

1.2 Literature Review

To the best of our knowledge, there is no previously published research studying and presenting a model and
analysis of the generalized VRP problems addressed in this paper. A few purely computational studies (see,
for example, [11], [30], [15], and [16]) have been carried out, but are exclusively empirical in nature, and do
not provide a significant insight into the analysis of their underlying algorithms or theoretical implications
of the underlying mechanisms used to solve the problem.

ITP algorithms have been studied and applied to many different VRP scenarios. Most of this literature
exists in the theoretical computer science domain, and the algorithms are well-known for their amenability
to theoretical analysis. The underlying concept and the first ITP algorithm was presented by Haimovich,
Rinnooy Kan and Stougie in their path-breaking paper [13] (actually, they published an earlier version of
their work in [14]). The worst-case bound developed in [13] was shown to be tight by Li and Simchi-Levi [18].
This work was extended and modified later by Altinkemer and Gavish [1] and Beasley [2], but still applicable
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to only the standard VRP scenario. Subsequent research has seen applications and transformations to a few
different hypothetical and practical settings, however, none of these have addressed the problem in its general
form as we do. For example, there is individual work on ITP heuristics for multiple depot problems [18] and
for problems that have both pick-up and delivery aspects [19], but there is none that addresses both aspects.

Recently, Bompadre et. al. [4] presented lower bounds for the vehicle routing problem with and without
split deliveries, improving the well known bound of Haimovich, Rinnooy Kan, and Stougie. These bounds
were then utilized in a design of best-to-date approximation algorithms. Chawla [7] presented new ap-
proximation algorithms as well as hardness of approximation results for several planning and partitioning
problems. She gave the first approximation algorithms for problems such as orienteering, deadlines-TSP,
and time-windows-TSP, as well as results for planning in stochastic graphs (Markov decision processes).
However, her work is limited to TSPs, or uncapacitated VRPs. More importantly, the moving depot and
the GVRP aspects have not yet been studied.

Bramel and Simchi-Levi [6] developed an asymptotically optimal heuristic method called the location
based heuristic for the VRP with time windows by transforming it into a capacitated location problem with
time windows. They use Lagrangian relaxation coupled with probabilistic analysis to prove their result.
Earlier, they proved a variant of the location based heuristic to be also asymptotically optimal for the
standard capacitated VRP [5].

Daganzo [8] presents some analytical insight into distribution patterns for the VRP with pick-up and
delivery type problems at the system design level so as to potentially provide guidelines for districting and
cost estimation by characterizing broad routing strategies in terms of problem characteristics independent
of specific customer locations. For the VRP with pick-up and delivery, the first probabilistic analysis of a
simple algorithm was presented by Stein [29]. Later on, Psaraftis [21] showed his adaptation of the minimum
spanning tree heuristic for the TSP to have a worst-case performance ratio of 3.0 while also demonstrating
its superior practical performance as compared to Stein’s method. Gendreau et. al. [10] analyzed the single
unit vehicle routing problem with pick-up and delivery (or, in other words, the traveling salesman problem
with pick-up and delivery) on trees and cycles showing that these problems can be solved optimally in linear
time, and that a tight worst-case performance ratio of 2, 3 can be achieved on undirected, complete, and
triangular networks by the tree- and cycle-based heuristic, respectively.

In summary, we find that there is no prior work that addresses a practical and unified VRP scenario
where there are

� simultaneous considerations of both the pick-up and the delivery aspects in routing;

� allowing only one or more locations out of mutually exclusive and exhaustive groups of several possible
customer sites to be visited, i.e. delivering to groups of customer sites (such that the underlying
structure of the problem becomes a GTSP rather than a vanilla TSP)

� exploiting the availability of multiple depots,

� the depots are mobile and can reposition themselves into advantageous locations,

� allowing for vehicles to have partially-utilized capacity in favor of opportunistic pick-ups at a later
stage in the route.

2 Problem Statement

In the PCB context, the problem can be stated as one of finding the least cost sequence of picking-up
components from the feeder magazine and placing them on the board subject to the following conditions:

(1) all components required by the design must be placed,

(2) every component that is placed must have been picked up previously (and not yet placed),

(3) every spindle may contain only one component during a ‘route’, and

(4) at no time in a route must the capacity of the head be violated.

At the same time, we want to fully exploit opportunities offered by simultaneous motion, spindle jumping
(a phenomenon caused by allowing bidirectional and multi-stepped indexing motion of the placement head),
and feeder magazine movement.

This can be restated in a generic VRP context as follows. Assuming
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� there are n customers (i.e., board locations in our case), and

� there are m depots (i.e., feeder slots in our case) to pick up the items from,

the problem characteristics entail the following restrictions:

1. every ‘customer’ requires only one item of a specific type, i.e., there is a single-unit demand; and

2. each depot stocks a single item type, implying that travel among depots is required as the vehicle
moves from depot to depot to pick up each of the required items.

The objective is to find the least cost sequence of pick-up of items from the depots and delivering them to
the ‘customers’ subject to the following conditions:

� all items required by the customers must be delivered,

� every item delivered must have been picked up previously (and not yet delivered),

� the capacity limit of the vehicle must not be violated, and

� the cost implications of the loading and unloading sequence for the vehicle to be formalized later are
accounted for.

A typical route is depicted in Figure 4. Each of the customer locations, as well as depot locations, can be
served by any one of the spindles on the head. The choice of the spindles for the different locations is akin
to the assignment of a customer on a vehicle with multiple seats, and correspondingly different “occupancy
costs” for the seats, as in a commercial airliner, for example. This can be modeled by expanding the network
to accomodate groups of customer locations, only one of which is finally chosen in any given route. (Each
node corresponds to a seat occupied by the customer and since a customer must sit in exactly one seat, a
single node in a group must be selected.) The problem is further complicated by the introduction of mobility
for depots, allowing them to re-position themselves to a more suitable location when eventually intercepted
by the vehicle during the period that the vehicle is out on its tour delivering customers. This is handled by
discretizing the possible locations that the depot can move to, and correspondingly adding a third dimension
to the network model, where each of the pairs of depot location-spindle combinations is now supplemented
by real-time depot position information.

2.1 Network Modeling Concepts

In this section, we present the modeling concepts used to define our network models based on which the
analysis has been carried out for the different cases. Based on the description aforementioned, it becomes
clear that we need a generalized network model comprising of groups of nodes to represent the problem
because each pick-up or drop-off location can be potentially visited by any one of the spindles on the head.
Thus, each group represents a physical site or location, and the nodes within a group represent the different
possibilities (of which only one can exist in a feasible route solution) of visiting that location with the spindles
(based on Figure 4, we would have to have a set of board and feeder nodes). However, such a network would
be thus, extremely complicated obliterating the possibility of an analytical study. Therefore, to simplify the
network model we developed an innovative idea of using a double-cost arc representation, which we later
extend to a multiple-cost arc representation. This allows us to go away with the depot nodes and their groups
completely for the sake of the analysis. It is important to stress that this new network nicely captures the
depot movements through the unconventional cost structure defined later on in this section.

2.1.1 Formal Definition of the Generalized and Expanded 2-Cost Edge Network (GE2−CEN)
Model

In this section, we present a generalized and expanded formulation of the two-cost edge network (GE2 −
CEN). We begin by assuming that each time the vehicle is dispatched, it must be fully loaded with exactly
q items. Consider a complete undirected graph G(X,E), where X is the set of nodes, and E is the set of
edges. Let G1, G2, ., GK be a partition of X into K mutually exclusive and exhaustive subsets or groups.
Every node i ∈ X has a unique index g(i) ∈ {1, 2, ., K} such that i ∈ Gg(i). Each group is defined for a
customer subset (board location) having multiple ‘cities’ or locations (board location and pick-up spindle
combinations). We assume throughout that n ≥ K ≥ q, i.e., ζ = K/q ≥ 1, where q is the capacity of the
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Figure 4: Example of a typical ‘route’

vehicle. Any two nodes i and j in this network are connected by an edge with two types of costs on it - the
primary cost, which is the ‘direct’ cost to go from node i to node j, and the secondary cost, which is the
‘indirect’ cost to go from node i, visiting exactly q depots en route, filling up the entire vehicle, which always
is assumed to return empty, and returning to node j (see Figure 5). The direct cost di,j is the ‘true’ cost of
the vehicle moving from node i to node j. The indirect cost ri,j models the case of the truck finishing the
last delivery at node i, next visiting q depots (not modeled explicitly), and then moving to node j with q
items to start the next delivery. Cost ri,j is the cost of performing these operations in the most cost effective
way.

In standard VRP settings, di,j is the cost of going directly from i to j. On the other hand, ri,j would
typically be the cost of finishing a route at node i, transitioning to the lowest cost depot and starting a new
route at node j. Note that there are groups only corresponding to the customers, and thus, the depots are
not represented either by nodes or groups. We define for each edge (i, j) ∈ E, the ‘direct’ cost di,j = dj,i

between nodes i and j, and the ‘indirect’ cost ri,j = rj,i between nodes i and j.
We also define rmin

u,v = mini∈Gu, j∈Gv ri,j to be the smallest distance between any two nodes of customer
groups Gu and Gv.

For ease of notation, we define di,i = ri,i = 0. We also make the following assumptions:

di,j ≤ ri,j i ∈ X, j ∈ X, (1)
di,j ≤ di,k + dk,j i ∈ X, j ∈ X, k ∈ X, (2)
ri,j ≤ ri,k + dk,j i ∈ X, j ∈ X, k ∈ X. (3)

Assumption (1) states that the direct cost is lower than or equal to the indirect cost, which is clearly
the case in VRP settings. In the PCB setting, this is also the case as argued in [25]. Inequality (2) is the
standard triangle inequality of the direct cost. Finally, (3) links direct and indirect costs. As such, it holds
in VRP settings, and also in the PCB setting as shown in [25].

Note that (3) and (1) imply the triangle inequality of indirect cost. For future analysis, we rewrite (3) as

ri,j ≤ di,i′ + rj,i′ ≤ di,i′ + ri′,j′ + dj′,j i ∈ X, i′ ∈ X, j ∈ X, j′ ∈ X. (4)
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Figure 5: Generalized and expanded 2-cost edge network formulation

2.1.2 Formal Definition of the Generalized and Expanded Multi-Cost Edge Network (GEM −
CEN) Model

We also define a specially-formulated generalized and expanded multi-cost edge network formulation. This
network is used in the cases when trucks are not required to be fully loaded. The GEM −CEN network is
a complete undirected graph G(X, E) as before, where X is the set of nodes, and E is the set of edges. Let
us also have G1, G2, ., GK as a partition of X into K mutually exclusive and exhaustive groups as before.
Likewise, every node i has a unique index g(i) ∈ {1, 2, .,K} such that i ∈ Gg(i). In this formulation q + 1
costs are defined for each edge, i.e., there is a direct cost and q indirect costs between any two nodes (see
Figure 6). The indirect cost rh

i,j between node i and node j corresponds to the indirect cost of going from
node i to node j while visiting h depots en route. We note that r1

i,j refers to the indirect cost between nodes
i and j through a single depot. We also define rh,min

u,v = mini∈Gu, j∈Gv rh
i,j .

Figure 6: Generalized and expanded multi-cost edge network formulation
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We make the following assumptions:

di,j ≤ rh
i,j i ∈ X, j ∈ X, 1 ≤ h ≤ q, (5)

di,j ≤ di,k + dk,j i ∈ X, j ∈ X, k ∈ X, (6)

rh
i,j ≤ rh

i,k + dk,j i ∈ X, j ∈ X, k ∈ X, 1 ≤ h ≤ q, (7)

rh1
i,j ≤ rh2

i,j i ∈ X, j ∈ X, 1 ≤ h1 ≤ h2 ≤ q. (8)

Assumptions (5)-(8) are similar to the already discussed assumptions (1)-(3). We derive

rh
i,j ≤ di,i′ + rh

i′,j′ + dj′,j i ∈ X, i′ ∈ X, j ∈ X, j′ ∈ X (9)

for every h. Condition (9) recognizes that the value of the shortest path through h depots is lower or equal
to the value of the shortest path through h + 1 depots. In [25], we argue that this is the case for PCB
manufacturing.

2.2 Variants of the Problem

We examine three specific variants of the problem. To the best of our knowledge, the GVRP, even by itself
(without the generalizations motivated by the PCB setting), has not yet been studied from an analysis point
of view.

The first variant assumes fully loaded trucks, the next allows partially loaded trucks, and the last variant
takes the aspect of moving depots into account.

2.2.1 The Generalized Full-load Case

In this case, we assume that the vehicle always runs a full load on its way out from the depots. The problem
is modeled based on GE2 − CEN . In other words, we assume that we fill the vehicle to capacity and the
vehicle returns to a depot empty. We also assume that the depots are stationary. This is the most basic
scenario that we analyze and it provides a building block for the remaining two scenarios.

Under the assumptions listed above, the problem being investigated here can be re-stated as that of
finding a least cost GTSP-like (i.e., each node is visited at most once) sequence of edges in this specially
formulated two-cost edge network. This problem differs from GTSP in that it uses a special cost function to
compute the total cost of a GTSP-like ‘tour’. We use both the primary and secondary costs to compute the
total cost, where the cost used on an edge depends upon the position of that edge in the tour. This special
cost function is designed to reflect the actual vehicle routing type problem scenario.

Let us define a segment as a sequence of q consecutive edges on a GTSP-like tour. The cost of a segment
is defined as the sum of the indirect cost ri,j of the first edge and the total direct costs di,j of the last q − 1
consecutive edges of the segment (see Figure 7).

The GTSP-like tour we are interested in is a sequence of ζ consecutive segments of q edges each such
that exactly one node in each G1, ..., GK is visited.

The problem is to find the least cost GTSP-like tour R = {u1, u2, ..., uζ} with segments u1, ..., uζ and the
cost of the tour as determined by

C(R) =
ζ∑

s=1


rf(us) +

∑

e∈F (us)

de


 . (10)

Given segment u, we denote by f(us) the first edge in the segment, and by F (us) the remaining edges in the
segment. The orientation of each segment is defined with respect to the orientation of R.

2.2.2 The Generalized Partial-load Case

In the generalized partial-load case, we relax the assumption of the vehicle always carrying a full load from
the depots.

The problem being investigated can thus be re-stated as that of finding the least cost GTSP-like sequence
of edges in the GEM − CEN .

A segment is now defined to be a sequence of q or less consecutive edges on a GTSP-like tour.
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Figure 7: Cost of a segment for the generalized full-load case

The cost of a segment with h edges is now computed as the sum of rh
i,j of the first edge of the segment

and the direct cost components di,j of the last h− 1 consecutive edges of the segment.
Let us assume we have η segments in a GTSP-like tour with lengths h1, ..., hη. The cost of the GTSP-like

tour is now determined as

C(R) =
η∑

s=1


rhs

f(us) +
∑

e∈F (us)

de


 .

2.2.3 The Generalized Partial-load Case with Waiting Cost

In this case, we relax the assumption of stationary depots and introduce the maximum component in the
computation of the objective function. We assume that the depots are linked and move together. This is
commonplace in most applications motivating such a setting, for example, robotics, automation, and rail-
cars. An alternative way to state this assumption is to say that we are given a set of depots and their
locations, and we have the flexibility of moving the entire ‘plane’ (all depots will move by the same amount).
This captures the PCB setting since by moving the feeder all feeder slots move in sync by the same amount.
Thus, there is a finite, discrete set of positions P taken on by the depots in relation to the default “home”
or base position.

We redefine the GEM −CEN to have nodes of the form (i, p) where i refers to a customer location and
p refers to the position of the depots when the vehicle is at customer i. This makes a discrete approximation
to the underlying continuous motion of the depots, but it is not anticipated to be a bad approximation in
practical VRP settings. Note that the quality of the approximation can be controlled by expanding the set of
all depot positions P (clearly at the expense of a larger network). Then the problem being investigated can
still be stated as that of finding the least cost GTSP-like sequence of edges in the GEM −CEN . However,
the special cost function to compute the total cost of a GTSP-like tour is now modified to account for the
moving depots. Note that the vehicle and the depots must synchronize at points of convergence, i.e., either
the vehicle has to wait for the depot to move to a location, or the other way around. For the remainder of
this paper, we continue to denote a customer node by a single index i assuming that the position information
is implicitly stored in each node.

A segment is still defined to be a sequence of q or less consecutive edges on a GTSP-like tour, but the
cost definition of a segment now includes a special cost between the two nodes corresponding to the start and
end of a segment (see Figure 8). To this end, let si,j be the special cost corresponding to the cost of moving
the depots from positions defined by p1 and p2 corresponding to the nodes i and j, respectively. Values si,j

capture any waiting time penalties (in the PCB setting, the cost is actually measured in time units). The
cost of a segment with h edges is now computed as the sum of rh

i,k of the first edge of the segment, and
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Figure 8: Cost of a segment for the generalized partial-load case with waiting cost

the maximum of the special cost si,j between the start and end points of the segment and the direct cost
components dk,m of last (h − 1) consecutive edges of the segment. The choice of the maximum operator
captures the time/waiting interpretation of the cost. We note that again the segment is of length h rather
than of length q.

For the partial load case with waiting cost, we need to impose the following additional assumption on
the extent of the violation of the triangular inequality caused by the inclusion of the maximum component.
We assume that

si,j

∆
≤ di,k + dk,j i ∈ X, j ∈ X, k ∈ X (11)

for a fixed finite value ∆. Requirement (11) states that s and d values might not satisfy the triangle inequality
(if they do, there is no need for the maximum component), instead it can be violated by at most ∆.

Let us assume we have η segments R = {u1, ..., uη} in a GTSP-like tour with lengths h1, ..., hη. The cost
of the tour is now determined as

C(R) =
η∑

t=1



rht

f(ut)
+ max


 ∑

e∈F (ut)

de, sf2(ut),f1(ut)








where we denote by f1(ut) the head node of the last edge in the segment, and f2(ut) the head node of the
first edge in the segment.

3 Analysis of the Iterated Tour Partitioning Heuristic

Let us introduce the following notation.

X = {x1, x2, ..., xn} is the set of nodes in the network

Xw = subset of nodes visited by the wth segment of a GTSP-like tour

R∗ = optimal GTSP-like tour over set X using C(R∗) to determine its cost

G∗ = optimal GTSP tour using direct costs on edges over set X with cost C̄(G∗) =
∑

e∈G∗ de

r̄G∗ =
∑

a∈G∗ ra/K

11



r̄h
G∗ =

∑
a∈G∗ rh

a/K

r̄min
G∗ =

∑
a∈G∗ rmin

a /K

r̄h,min
G∗ =

∑
a∈G∗ rh,min

a /K

3.1 The Generalized Full-load Case

We start by formally describing the iterative tour partitioning heuristic. The heuristic first computes the
optimal GTSP tour G∗ by considering only direct cost d. Next a node and an orientation of G∗ are fixed.
We follow G∗ based on the selected orientation by starting at the node and each q − 1 edges, we design the
next edge to bear the indirect cost. After reaching back the original node we obtain a GTSP-like tour. The
entire process is repeated for each possible starting node and the lowest cost solution among the q solutions
is returned. (It actually suffices to only take q consecutive nodes as starting nodes.) The main result of this
section is to establish a worst-case ratio for this heuristic.

Description of the Heuristic

1. Compute G∗.

2. Choose an arbitrary node p and an arbitrary orientation along G∗.

3. Partition G∗ into ζ segments to get a solution starting from node p.

4. Record the underlying cost.

5. Repeat steps 2 - 4 by starting with customers p + 1, p + 2, ...p + q− 1 to obtain a solution with respect
to each one of them.

6. Choose the best among the q solutions obtained and denote it by RH .

3.1.1 Approximation Ratio

We start by establishing a lower bound on the optimal value.

Theorem A.1 We have

C(R∗) ≥ max
{
r̄min
G∗ , C̄(G∗)

}
. (12)

Proof: It is clear that we have C(R∗) ≥ C̄(G∗) due to (1).
Let us first consider ζ > 1. We also know that, for a given optimal GTSP tour G∗ and given edge

e = {k, l} ∈ G∗, both the tail customer group Gg(k) and the head customer group Gg(l) are visited in some
order by the optimal solution R∗, albeit possibly through some different nodes, say, i ∈ Gg(k) and j ∈ Gg(l).
We know that either one of the two possible paths in R∗ between customer groups Gg(k) and Gg(l) must
contain at least one edge that contributes the indirect cost since ζ ≥ 2. Let us renumber the nodes so that one
path of the optimal solution between customer group Gg(k) to Gg(l) (along R∗) is denoted by 1, 2...α, β, ..., t
with edge {α, β} contributing the indirect cost towards C(R∗). Note that this might not be the only edge
contributing the indirect cost. Similarly, let the nodes along the other path following R∗ between customer
group Gg(k) and Gg(l) be denoted by 1′, 2′, ..., t′. We have from our assumptions (see also Figure 9),

rmin
e = rmin

g(k),g(l) ≤ ri,j

≤ ri,β + dβ,j (13)
≤ ri,β + (dt,j + dt−1,t + dt−2,t−1 + dβ,t−2) (14)
≤ di,α + rα,β + (dt,j + dt−1,t + dt−2,t−1 + dβ,t−2) (15)
≤ (di,1 + d1,2 + dα−1,α) + rα,β + (dt,j + dt−1,t + dt−2,t−1 + dβ,t−2) (16)
≤ C(R∗), (17)
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g(k) g(l)

g(1)

g(2)
g( ) g( ) g(t-2)

g(t-1)

ri,j

di,1

g(t)

g(t’)

g(t’-1)

g(t’-2)

g(2’)

g(1’)

di,j

ri,j

R*

R*

d1,2

d2,

di,

r ,

ri,

d ,t-2

d ,t-2

d ,j

dt-1,t

dt,j

dt’ ,j

dt’-1,t’

dt’-2,t’-1

d1’, 2’

di, 1’

Figure 9: Derivation of lower bound
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where (14) and (16) follow from (2), (13) and (15) follow from (3), and (17) follows from (1) and the
nonnegativity of costs.

If ζ = 1 and ri,j is the only indirect cost edge in R∗, we clearly have ri,j ≤ C(R∗). If ζ = 1 and ri,j is
not the only indirect cost edge, it implies that there is a different edge on R∗ contributing its indirect cost
and thus we proceed as in the case ζ ≥ 2.

Since re ≤ C(R∗) for every e ∈ G∗, it follows that r̄min
G∗ ≤ C(R∗).

Next we obtain an upper bound on C(R∗). Let RH be the GTSP-like tour solution produced by the
heuristic with C(RH) as the underlying cost.

Theorem B.1 We have

C(R∗) ≤ C(RH) ≤ K

q
r̄G∗ +

(
1− 1

q

)
C̄(G∗). (18)

Proof: We observe that the cumulative length of the q solutions encountered by the heuristic is equal to
∑

e∈G∗
re + (q − 1) · C̄(G∗).

The value C(RH) equals the best solution value among the q solutions, and thus must be less than or equal
to the average value of all encountered solutions. Therefore, we conclude

C(RH) ≤
∑

e∈G∗ re

q
+

(
1− 1

q

)
C̄(G∗),

or equivalently

C(RH) ≤ K

q
r̄G∗ +

(
1− 1

q

)
C̄(G∗).

The statement C(R∗) ≤ C(RH) clearly holds.

From Theorem A.1 and Theorem B.1, we obtain the following main result.

Theorem C.1 We have

C(RH)
C(R∗)

≤ r̄G∗

max{r̄min
G∗ , C̄(G∗)}

K

q
+

C̄(G∗)
max{r̄min

G∗ , C̄(G∗)}
(

1− 1
q

)
. (19)

If we reduce the problem to a standard VRP scenario where there are no clusters and there is no need
for the truck to visit several depots between two routes, we observe that the above derived bound reduces
to the bounds in [13] and [18].

3.1.2 Tightness of the Bound

In this section, we prove that the derived bound (19) is tight by finding a family of instances with K clusters
for which (19) is at equality.

Consider network G(X, E) with K customer groups, m nodes each. Consider one node, called the ‘leader’
node from each of the K groups being placed at equal intervals along the perimeter of a circle of diameter φ
with φ > 2(K−1) and consecutive nodes being placed at angular intervals of ε = 2π(K−1)/n incrementally
from the leader node of the underlying group (see Figure 10). Thus, we have a total of n = K ·m nodes
and we assume that q divides n. Note that since φ > 2(K − 1), we have ε ≤ πφ/n and thus the groups do
not overlap. We fix a given orientation of the circle. Let di,j = ri,j be the distance along the circle from
customer i to customer j. Then the optimal GTSP tour follows the circle itself using, say, the first node or
leader from each customer group. We have C̄(G∗) = πφ.

In our example, we clearly satisfy the required assumption ri,j ≥ di,j . Furthermore, we also satisfy the
other two assumptions di,j ≤ di,k + dk,j and ri,j ≤ ri,k + dk,j (because di,j = ri,j). We know that

di,j = ri,j =
φ

2
(ρ + (b− a)ε)

14



Group 1

Group 2

Group 3

Group K

Figure 10: Tightness proof instance

for all i, j belonging to consecutive groups on the circle where ρ = 2π/K and a, b are the sequence numbers
of nodes i, j in their respective groups. We note that rmin

u,v = (ρ−mε)φ/2 for two consecutive clusters u and
v. Therefore, we have

r̄min
G∗ =

1
K

{
K

ρφ

2
+ Km

εφ

2

}
=

ρφ

2
+

mεφ

2
.

On the other hand, r̄G∗ = πφ/K = ρφ/2.
Since ri,j = di,j , R∗ visits the nodes in the same sequence along the perimeter of the circle, and its value

is clearly Kρφ
2 .

The heuristic begins with the GTSP tour and chooses, regardless of the starting point due to symmetry, a
solution of equal cost, i.e., C(RH) = Kρφ

2 . We conclude C(RH)/C(R∗) = 1. We also obtain, by substituting
values derived above

r̄G∗

max{r̄min
G∗ , C̄(G∗)}

K

q
+

C̄(G∗)
max{r̄min

G∗ , C̄(G∗)}
(

1− 1
q

)
= 1.

Here we use the definition of ε, which implies that max{r̄min
G∗ , C(G∗)} = C̄(G∗). Hence, the bound is tight

for these instances.

3.2 The Generalized Partial-load Case

In this section, we perform the analysis for the case when the vehicle can carry less than q units. The major
challenge is to adapt the iterated tour partitioning heuristic. While the heuristic still finds a feasible solution,
the resulting encountered set of feasible solutions is too stringent (only full truck loads are considered). For
this reason we need to generalize it. The act of finding G∗ remains the same.

As before, we fix the orientation of G∗. For simplicity, we label the nodes 1, ..., K along G∗. Let us create
a new auxiliary network where there is a node for every set of q or less consecutive edges on G∗. The number
of nodes is

(
K
q

)
.

Two nodes c1 and c2 in this new auxiliary network are connected by an arc with cost rh
i,j if the tail

node c1 represents a sequence of edges (in the original network) ending with node i and the head node c2

represents a sequence of h edges (in the original network) starting with node j (see Figure 11).
A node itself carries an additional cost equivalent to the cumulative cost of traversing the sequence of

arcs that it represents in the original network using the direct costs. Thus, if node c1 in the auxiliary network
represents the sequence of nodes a−k, a−k+1, ..., a, the cost of the node in the auxiliary network is defined
by

∑a−1
y=a−k dy,y+1.

Let us now fix a customer group p. To this auxiliary network, we add a source node s and sink node t
to facilitate the computation of the shortest path through the network. Source s is connected to each node
corresponding to a sequence originating at customer group p. The cost of an (s, c1) arc equals to the cost of
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picking up as many items as nodes in the original network represented by c1, and then moving to node p.
Similarly, each node corresponding to a sequence ending with p is connected to t with a cost of 0.

We repeat the construction of the network starting with customer groups p+1, p+2, ...p+q−1 to obtain
q such networks. It is easy to see that each s−t path in these networks yields a feasible solution. In addition,
each solution following G∗ corresponds to an s − t path in one of the networks. By the definition of costs,
the cost of a path in any one of these auxiliary networks equals to the cost of the corresponding GTSP-like
solution.

c1

c2

c1 = {a-k,a-k+1,…,a }

c2 = {a+1,a+2,…,a+h }Arc cost = rh
a,a+1

a-1

Node cost = dy,y+1
y=a-k

a+h-1

Node cost = dy,y+1
y=a+1

Figure 11: Costs related to the auxiliary network

The formal description of the heuristic follows.

Description of the Heuristic

1. Compute G∗.

2. Choose an arbitrary customer group p and an arbitrary orientation along G∗.

3. Construct the q auxiliary networks.

4. Compute the shortest s− t path in each one of the created auxiliary networks.

5. Choose the best among the q solutions so obtained and denote it by RH .

3.2.1 Approximation Ratio

We start by generalizing Theorem A.1

Theorem A.2 We have

C(R∗) ≥ max
{

r̄1,min
G∗ , C̄(G∗)

}
. (20)

Proof: It is clear that we have C(R∗) ≥ C̄(G∗) due to (5).
Let first ζ > 1. We know that, for a given optimal GTSP tour G∗ and given edge e = {k, l} ∈ G∗,

both the tail customer group Gg(k) and the head customer group Gg(l) are visited in some sequence on the
optimal solution R∗, albeit possibly through some different nodes, say, i and j. We know that either one of
the two possible paths in R∗ between customer groups Gg(k) and Gg(l) must contain at least one edge which
contributes the indirect cost since ζ > 1.

Let us renumber the nodes so that nodes 1, 2, ..., α1, β1, ..., ατ , βτ , ..., t form one path from node i to
node j along R∗ with τ edges {α1, β1}, ..., {ατ , βτ} contributing indirect costs rp1

α1,β1
, ..., rpτ

ατ ,βτ
, and nodes

1′, 2′, ..., α1′ , β1′ , ..., ατ ′ , βτ ′ , ..., t
′ form the other path with τ ′ edges {α1′ , β1′}, ..., {ατ ′ , βτ ′} contributing in-

direct costs r
p1′
α1′ ,β1′

, ..., r
pτ′
ατ′ ,βτ′

. We have (see Figure 12)
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g(k) g(l)

g(1)

g(2)

g( 1) g( 1)

r1
i,j

g(t’)

g(t’-1)

g(1’)

R*

R*

g( 2) g( 2) g( )
g( )

g( 1’)

g( 1’) g( ’)
g( ’)

dci,cj

rci,cj
h

Node ci Node cj

h

p1’

p ’

p1 p2
p g(t)

ci cj

Figure 12: Derivation of modified lower bound
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C(R∗) =
{

di,1 + d1,2 + ... + rp1
α1,β1

+ ...

+ rp2
α2,β2

+ ... + rpτ

ατ ,βτ
+ ... + dt,j

}

+
{

dj,t′ + ... + r
pτ′
ατ′ ,βτ′

+ ... + r
p′2
β2′ ,α2′

+ ...

+ r
p′1
β1′ ,α1′

+ ... + d1′,i

}
(21)

≥
{

di,α1 + rp1
α1,β1

+ dβ1,α2 + rp2
α2,β2

+ dβ2,α3 + ...

+ rpτ

ατ ,βτ
+ dβτ ,t + dt,j

}

+
{

dj,t′ + dt′,βτ′ + r
pτ′
βτ′ ,ατ′

+ ...

+ r
p′2
β2′ ,α2′

+ dα2′ ,β1′ + r
p′1
β1′ ,α1′

+ dα1′ ,1′ + d1′,i

}
(22)

≥ {
di,α1 + r1

α1,β1
+ dβ1,α2 + r1

α2,β2

+dβ2,α3 + ... + r1
ατ ,βτ

+ dβτ ,t + dt,j

}

+
{

dj,t′ + dt′,βτ′ + r1
ατ′ ,βτ′

+ ... + r1
β2′ ,α2′

+dα2′ ,β1′ + r1
β1′ ,α1′

+ dα1′ ,1′ + d1′,i

}
(23)

≥ r1
i,j (24)

≥ r1,min
g(k),g(l)

where (21) follows from the definition of C(R∗), (22) follows from (6), (23) follows from (8), and (24) follows
from (6) and (7).

If ζ = 1 and rh
i,j is the only indirect cost edge in R∗, we clearly have r1

i,j ≤ C(R∗). If ζ = 1 and rh
i,j is

not the only indirect cost edge, it implies that there is a different edge on R∗ contributing its indirect cost
and thus we proceed as in the case ζ ≥ 2.

Since r1,min
g(a),g(b) ≤ C(R∗) for every {a, b} ∈ G∗, it follows that r̄1,min

G∗ ≤ C(R∗).
Next, we establish an upper bound on C(RH).

Theorem B.2 For each h = 1, 2, ..., q and K mod h = 0, we have

C(R∗) ≤ C(RH) ≤ K

h
r̄h
G∗ +

(
1− 1

h

)
C̄(G∗). (25)

For each h = 1, 2, ..., q and K mod h > 0, we have

C(R∗) ≤ C(RH) ≤ 2K

h
r̄h
G∗ +

(
1− 2

h

)
C̄(G∗). (26)

Proof: We observe that each of the q solutions is a shortest s− t path in the respective network. Thus, it
is shorter than any other path through the underlying network.

Suppose we only consider paths such that each node on the path represents a sequence of h customer
groups in the original network except for the very last node, which could correspond to a sequence of length
less than h. We derive that there are only h such unique paths among the q networks denoted by P1, ...,Ph,
and with lengths L(P1), ..., L(Ph), respectively.

Let S1,S2, ...,Sq be the shortest paths through the q networks and L(S1), L(S2), ..., L(Sq) be their lengths.
Imagine that we have q · h networks where each of the q networks is repeated h times. We thus have q

repetitions of each of the paths P1, ...,Ph and h repetitions of paths corresponding to S1, ...,Sq among these
networks. Since L(Si) is a shortest path value, it follows that L(Si) ≤ L(Pk) for each matching k. We thus
have

h ·
q∑

i=1

L(Si) ≤ q ·
h∑

j=1

L(Pj).
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Therefore, we conclude that

∑q
i=1 L(Si)

q
≤

∑h
j=1 L(Pj)

h
.

Clearly, the value C(RH), which is equal to the best solution value among the q solutions, must be less
than or equal to the average value of these q solutions. Therefore, we have

C(RH) ≤
∑q

i=1 L(Si)
q

≤
∑h

j=1 L(Pj)
h

.

Let first K mod h = 0. We know that
h∑

j=1

L(Pj) =
∑

e∈G∗
rh
e + (h− 1) C̄(G∗)

because of the structure of the chosen paths. Since K mod h = 0, each vehicle dispatched in Pj carries
exactly K/h units. Therefore, we get

C(RH) ≤
∑

e∈G∗ rh
e

h
+

(
1− 1

h

)
C̄(G∗)

or

C(RH) ≤ K

h
r̄h
G∗ +

(
1− 1

h

)
C̄(G∗).

Let now K mod h > 0. In this case, the vehicles do not dispatch the same number of units. It is not
difficult to see that

h∑

j=1

L(Pj) =
∑

e∈E1

(
rh
e + (h− 1) · de

)
+

∑

e∈E2

(
rh
e + rh̄

e + (h− 2) · de

)

for h̄ = K mod h − 1 < h. Here G∗ = E1 ∪ E2, E1 ∩ E2 = φ. Since rh̄
e ≤ rh

e and de ≤ rh
e for every e, we

obtain

h∑

j=1

L(Pj) ≤
∑

e∈E1

(
2rh

e + (h− 2) · de

)
+

∑

e∈E2

(
2rh

e + (h− 2) · de

)

=
∑

e∈G∗

(
2rh

e + (h− 2) · de

)
= 2

∑

e∈G∗
rh
e + (h− 2) · C̄(G∗).

The rest of the proof follows the steps from the case K mod h = 0. Inequality C(R∗) ≤ C(RH) is trivially
true.

Since q ≤ K, we note that if 1 ≤ h ≤ q − 1, then K mod h > 0, but if h = q, then K mod h can either
be 0 or positive. From Theorem A.2 and Theorem B.2, and defining

H(α) =





2
r̄α
G∗

max{r̄1,min
G∗ , C̄(G∗)}

K

α
+

C̄(G∗)
max{r̄1,min

G∗ , C̄(G∗)}

(
1− 2

α

)
K mod α > 0

r̄α
G∗

max{r̄1,min
G∗ , C̄(G∗)}

K

α
+

C̄(G∗)
max{r̄1,min

G∗ , C̄(G∗)}

(
1− 1

α

)
K mod α = 0,

we obtain the following main result.

Theorem C.2 We have

C(RH)
C(R∗)

≤ min
α∈{1,2,...,q}

H(α). (27)

Since both [13] and [18] did not consider the partial load case, we cannot compare bound (27) to their
results.
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3.2.2 Tightness of the Bound

In this section, we prove that the modified bound (27) is tight by finding a family of instances with K
customer groups, each with m nodes, for which (27) is at equality.

We consider the same example as in Section 3.1.2, but with q indirect-cost edges between every pair of
nodes. We let da,b = rh

a,b be the distance along the circle from customer a to customer b for 1 ≤ h ≤ q.
All assumptions (5)-(8) are clearly satisfied. Then the optimal GTSP tour follows the circle itself and
C̄(G∗) = πφ.

As in Section 3.1.2, we have

r̄h,min
G∗ =

ρφ

2
+

mεφ

2
.

Since di,j = rh
i,j for all i, j consecutive on the circle, and for every h, we obtain a series of optimal solu-

tions of equal objective value by visiting the nodes in the same sequence along the perimeter of the circle. An
optimal solution R∗ also is using the indirect cost r1

i,j on each edge {i, j} and is following the optimal GTSP
tour. Thus, the objective value of the solution is clearly C(R∗) = Kρφ/2 regardless of whether K mod h = 0
or K mod h > 0.

The heuristic begins with the TSP tour and chooses, regardless of the starting point, a solution of
equal cost, i.e., C(RH) = Kρφ

2 again regardless of whether K mod h = 0 or K mod h > 0. We conclude
C(RH)/C(R∗) = 1 in either scenario.

If K mod h = 0, we obtain, by substituting values obtained above

H(h) =
1
K
· K

h
+

(
1− 1

h

)
= 1

and when K mod h > 0, likewise we obtain

H(h) = 2 · 1
K
· K

h
+

(
1− 2

h

)
= 1

Hence, the bound is tight for these examples.

3.3 The Generalized Partial-load Case with Waiting Cost

In this section, we perform the analysis for the case when the depots can move in the plane, and thereby a
waiting cost is introduced into the cost computation function for the routes made by a vehicle. We create
a new auxiliary network where there is a node for every set of q or less consecutive edges on G∗ as before.
However, in this network, we modify the node costs to be the maximum of the special cost and the cumulative
cost of traversing the sequence of edges that the head node represents in the original network using the direct
costs (see Figure 13).

We again fix a customer group p and add a source node s and sink node t to facilitate the computation
of the shortest path through the network as before. Again, as before, source s is connected to each node
corresponding to a sequence originating at group p. Similarly, each node corresponding to a sequence ending
with p is connected to t.

We repeat the construction of the network starting with nodes p + 1, p + 2, ...p + q − 1 to obtain q such
networks. It is easy to see that each s− t path in these networks yields a feasible solution. In addition, each
solution following T ∗ corresponds to an s− t path in one of the networks.

The heuristic is exactly the same as before except using these networks with new definitions of costs.
Also in this case we are able to analyze the heuristic.

Theorem A.3 We have, as before

C(R∗) ≥ max
{

r̄1,min
G∗ , C̄(G∗)

}
. (28)

Proof: It is clear from (12) that C(R∗) in this case is only going to take on a higher value than the C(R∗)
computed in Theorem A.2. Since the conditions and assumptions of Theorem A.2 continue to hold here as
well, this completes the proof.

To upper bound the cost of the heuristic, we obtain the following result.
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Figure 13: Costs related to the auxiliary network

Theorem B.3 For each h = 1, 2, ..., q and K mod h = 0, we have

C(R∗) ≤ C(RH) ≤ K

h
r̄h
G∗ + ∆

(
1− 1

h

)
C̄(G∗). (29)

For each h = 1, 2, ..., q and K mod h > 0, we have

C(R∗) ≤ C(RH) ≤ 2K

h
r̄h
G∗ + ∆

(
1− 2

h

)
C̄(G∗). (30)

Proof: For any two nodes i, j and path P connecting these two nodes, from (11) and (6) we obtain
si,j ≤ ∆

∑
e∈P de. In turn it follows that max{si,j ,

∑
e∈P de} ≤ ∆

∑
e∈P de.

We observe as before that each of the q solutions is a shortest s− t path in the respective network. Thus,
it is shorter than any other path through the underlying network.

Suppose we again only consider paths such that each node on the path represents a sequence of h groups
in the original network except for the very last node, which could correspond to a sequence of length less
than h. We derive as before that there are only h such unique paths among the q networks denoted by
P1, ...,Ph with lengths denoted by L(P1), ..., L(Ph). We know from the proof of Theorem B.2 that

∑q
i=1 L(Si)

q
≤

∑h
j=1 L(Pj)

h

and therefore, we have

C(RH) ≤
∑q

i=1 L(Si)
q

≤
∑h

j=1 L(Pj)
h

.

Let first K mod h = 0. We know that

h∑

j=1

L(Pj) ≤
∑

e∈G∗
rh
e + ∆ · (h− 1) C̄(G∗)

because of our assumption (11) and the structure of the chosen paths.
Let now K mod h > 0. In this case, as in the proof of Theorem B.2 the vehicles do not dispatch the

same number of units and we obtain

h∑

j=1

L(Pj) ≤
∑

e∈E1

(
rh
e + ∆ · (h− 1) · de

)
+

∑

e∈E2

(
rh
e + rh̄

e + ∆ · (h− 2) · de

)
.
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The rest of the proof is identical to the proof of Theorem B.2.

From Theorem A.3 and Theorem B.3, and defining

H(α) =





2
r̄α
G∗

max{r̄1,min
G∗ , C̄(G∗)}

K

α
+

C̄(G∗)
max{r̄1,min

G∗ , C̄(G∗)}∆ ·
(

1− 2
α

)
K mod α > 0

r̄α
G∗

max{r̄1,min
G∗ , C̄(G∗)}

K

α
+

C̄(G∗)
max{r̄1,min

G∗ , C̄(G∗)}∆ ·
(

1− 1
α

)
K mod α = 0,

we obtain the following main result.

Theorem C.3 We have

C(RH)
C(R∗)

≤ min
α∈{1,2,...,q}

H′(α). (31)

3.4 Results for Standard VRP

In this section, we summarize the results when the problem is reduced to the standard multi-depot VRP
case. Recall that cost ri,j is defined as the cost of the truck finishing the last delivery at node i, next visiting
q depots (not modeled explicitly), and then moving to node j with q items to start the next delivery, in the
most cost effective way. They are obtained from the generalized cases by setting m, the number of nodes in
each group to be equal to 1.

In the full-load case we obtain the following known results, [18].

Theorem A.4 We have

C(R∗) ≥ max
{
r̄T∗ , C̄(T ∗)

}
,

C(R∗) ≤ C(RH) ≤
∑

e∈T∗ re

q
+

(
1− 1

q

)
C̄(T ∗),

C(RH)
C(R∗)

≤ r̄T∗

max{r̄T∗ , C̄(T ∗)}
n

q
+

C̄(T ∗)
max{r̄T∗ , C̄(T ∗)}

(
1− 1

q

)
. (32)

A bound independent of T ∗ reads

C(RH)
C(R∗)

≤ n− 1
q

+ 1. (33)

Inequality (33) follows from (32) due to

r̄T∗

max{r̄T∗ , C̄(T ∗)} ≤ 1,
C̄(T ∗)

max{r̄T∗ , C̄(T ∗)} ≤ 1.

The partial-load case has not been studied previously and thus the results below are new. Here rh
i,j is

interpreted as the indirect cost of going from node i to node j while visiting h depots en route in the most
cost-efficient manner.

Theorem A.5 We have

C(R∗) ≥ max
{
r̄1
T∗ , C̄(T ∗)

}
.

For each h = 1, 2, ..., q, if n mod h = 0, then

C(R∗) ≤ C(RH) ≤ n

h
r̄h
G∗ +

(
1− 1

h

)
C̄(G∗),

and if n mod h > 0,

C(R∗) ≤ C(RH) ≤ 2n
h

r̄h
G∗ +

(
1− 2

h

)
C̄(G∗).
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We also have

C(RH)
C(R∗)

≤ min
α∈{1,2,...,q}

H(α).

A bound independent of T ∗ reads

C(RH)
C(R∗)

≤ n− 1
q

+ 1

if K mod q = 0, and

C(RH)
C(R∗)

≤ n− 2
q

+ 2

if K mod q > 0.
We can also derive the following results from the partial-load case with waiting cost when moving depots

are introduced.

Theorem A.6 We have

C(R∗) ≥ max
{
r̄1
T∗ , C̄(T ∗)

}
.

For each h = 1, 2, ..., q, if n mod h = 0, then

C(R∗) ≤ C(RH) ≤ n

h
r̄h
G∗ + ∆

(
1− 1

h

)
C̄(G∗),

and if n mod h > 0, then

C(R∗) ≤ C(RH) ≤ 2n

h
r̄h
G∗ + ∆

(
1− 2

h

)
C̄(G∗),

and

C(RH)
C(R∗)

≤ min
α∈{1,2,...,q}

H′(α).

A bound independent of T ∗ reads

C(RH)
C(R∗)

≤ n−∆
q

+ ∆

if K mod q = 0, and

C(RH)
C(R∗)

≤ n− 2∆
q

+ 2∆

if K mod q > 0.

4 Conclusions

In this paper, we derive worst-case bounds on several versions of the iterated-tour partitioning algorithm
adapted for a superset of many important generalizations of the vehicle routing problem and its commonly
found variants such as the VRP with backhauls, the multi-depot VRP, and the VRP with pick-up and deliv-
ery. These bounds have also been proved to be tight. The analyses give us an insight into the development
of efficient algorithms that yield solutions that are provably within a given ratio of the optimal solution and,
furthermore, are tight.

An interesting and significant extension of this work might be to take into account the multi-commodity
nature of such problems, and develop and analyze ITP heuristics under such conditions. Another interesting
extension might be to allow for other constraints found in VRP scenarios, such as the time window constraints,
preceedence constriants, and depot stocking capacity constraints amongst others.
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