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Abstract

Fully sequential selection procedures have been developed in the field of stochastic simu-

lation to find the simulated system with the best expected performance when the number of

alternatives is finite. Kim and Nelson proposed the KN procedure to allow for unknown and

unequal variances and the use of common random numbers. KN approximates the raw sum

of differences between observations from two systems as a Brownian motion process with

drift and uses a triangular continuation region to decide the stopping time of the selection

process. In this paper we derive new fully sequential selection procedures that employ a more

effective sum of differences which we called a controlled sum. Two provably valid procedures

and an approximate procedure are described. Empirical results and a realistic illustration

are provided to compare the efficiency of these procedures with other procedures that solve

the same problem.



1 Introduction

In the stochastic simulation community, ranking and selection (R&S; see for instance Bech-

hofer, Santner and Goldsman 1995) procedures have been proposed to select the simulated

system with the largest or smallest expected performance measure when the number of al-

ternative designs is finite. There are many R&S procedures providing different types of

guarantees. In this paper we focus on extending one well-known and effective procedure

due to Kim and Nelson (2001, procedure KN ) which is a fully sequential R&S procedure.

Such procedures take a single basic observation from each system still in contention at each

stage, and eliminate systems whenever they are statistically inferior. This sort of elimination

has been shown to greatly reduce the computational effort required to find the best system

relative to two-stage procedures.

KN guarantees to select the best system with a pre-specified probability of correct se-

lection (PCS) when the true expectations satisfy an indifference-zone requirement. To ac-

complish this, KN approximates the sum of differences between observations from each pair

of systems as a Brownian motion process with drift, and uses a triangular continuation re-

gion to decide the stopping time of the selection process. Figure 1 shows the continuation

region for this procedure for systems i and k. Either system i or system k will be eliminated

depending on which direction the sum of differences exits this region. KN requires inde-

pendent and identically distributed (i.i.d.) normal data but it allows unknown and unequal

variances and the use of common random numbers (CRN). CRN is a technique that tries to

generate a positive correlation between the outputs of different systems, and therefore reduce

the variance of the difference between them, by using the same pseudorandom numbers to

simulate each system.

Recently, more adaptive or cost-effective procedures have been derived from KN to ad-

dress a variety of situations that are encountered in the stochastic simulation context. For

instance, Goldsman et al. (2001) and Kim and Nelson (2006) proposed two R&S procedures
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Figure 1: Continuation region for the fully sequential, indifference-zone procedure KN

that extend KN to steady-state simulation experiments. Many simulation optimization al-

gorithms try to move from a current solution to an improved solution on each iteration by

choosing the best from a set of neighbors. Pichitlamken et al. (2006) proposed fully sequen-

tial procedures that can provide a statistical guarantee on each iteration of an optimization

even if the initial sample sizes are unequal. Although KN can decrease the expected total

number of samples necessary to achieve a decision, it needs to repeatedly switch among the

different simulated systems to reduce the cost of sampling. Hong and Nelson (2005) pro-

posed sequential procedures that attempt to balance the cost of sampling and switching to

minimize the total computational cost. In practice it is possible that the number of systems

is not fixed at the beginning of the experiment; instead the systems are revealed sequentially

during the experiment. Hong and Nelson (2007) presented procedures to select the best each

time new systems are revealed and provide the desired statistical guarantee whenever the

experiment terminates. All of these fully sequential selection procedures mentioned above

are based on the raw sum of differences between two systems’ outputs.

Control variates (CV) is a variance reduction technique. Controls are random variables

in the simulation that are correlated with the output of interest, but whose expected values
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are known (Lavenberg and Welch 1981). Nelson and Staum (2006) derived two-stage R&S

procedures that employ CV estimators, and Tsai, Nelson and Staum (2008) added screening

in the first stage. These CV procedures can be more statistically efficient than their sample-

mean-based counterparts since the CV estimator has a smaller variance than the conventional

sample-mean estimator.

Our goal is to develop new fully sequential R&S procedures by employing a more effective

sum of differences, which we called a controlled sum, instead of the raw sum of differences

used in all previous work. A controlled sum of differences can be more statistically efficient

than a raw sum of differences because the Brownian motion process based on it has reduced

variance and the continuation region for the selection process has smaller area, leading to

fully sequential procedures that are correspondingly more efficient. In a controlled sum of

differences, the raw sum of differences is adjusted by a multiple β of the centered sum of

control variates that is correlated with the raw sum of differences. This reduces the variance

without changing the drift. The vector of coefficients, β, is critical to the effectiveness of

the controlled sum. When the optimal β is known, then our procedure is equivalent to KN

applied to a lower-variance output process. In practice, however, the optimal β is not known

and choosing β arbitrarily may degrade our procedure. Therefore, the key issue is estimating

the optimal β.

The paper is organized as follows: In Section 2, we present our CV model and a Generic

Procedure from which specific procedures are derived. In Section 3 we introduce a fully

sequential procedure assuming the optimal β, which we denote as β∗, is known and use

this procedure to show the potential benefits of the controlled sum. Section 4 provides a

statistically valid procedure when β∗ is unknown. In Section 5 we present a procedure that

combines the procedure in Section 4 and KN . An approximate procedure which can not

be proven to obtain the PCS guarantee but may require a smaller sample size is discussed

in Section 6. Empirical results and a realistic illustration are provided in Sections 7 and 8,

respectively. The paper ends with conclusions in Section 9. All proofs and most details of
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the procedures are relegated to the Appendix.

2 The Generic Procedure

In this section we present the CV model on which our procedures are based, provide the

definitions and notation that will be used throughout the paper and introduce the Generic

Procedure utilizing a controlled sum. The description in Section 2.1 is based on Nelson and

Staum (2006).

2.1 Control-Variate Model

Let Xij be the jth simulation observation from system i, for i = 1, 2, . . . , k. We assume that

it can be represented as

Xij = µi + (Cij − ξi)
T β∗

i + ηij , (1)

where the qi × 1 vector Cij is called the control and is assumed multivariate normal,

while {ηij , j = 1, 2, . . . , n} is a set of i.i.d. N(0, τ 2
i ) random variables. For each system

i = 1, 2, . . . , k, the controls {Cij , j = 1, 2, . . . , n} are also i.i.d., are independent of {ηij, j =

1, 2, . . . , n} and have known expected value ξi. The Xij are therefore i.i.d. N(µi, σ
2
i ) ran-

dom variables, with both µi and σ2
i unknown and (perhaps) unequal. Furthermore, for

each pair of systems i, ` = 1, 2, . . . , k, i 6= ` the controls (CT
ij,C

T
`j) and the (ηij, η`j) are

assumed multivariate normal. The multiplier β∗
i is a qi × 1 vector of unknown constants

that captures the relationship between the output Xij and the control Cij , while ηij rep-

resents that part of the variability in Xij that is not explained by the controls. As a con-

sequence of these assumptions, β∗
i = Var [Cij ]

−1 Cov [Cij ,Xij ] and τ 2
i = (1 − R2

i )σ
2
i , where

R2
i = Cov [Xij ,Cij ] Var [Cij ]

−1
Cov [Cij,Xij ] /σ

2
i , the square of the multiple correlation coef-

ficient between Xij and Cij (Lavenberg and Welch 1981). Model (1) can be justified when

(Xij ,C
T
ij) are themselves averages or standardized averages of some input random variables
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(Wilson and Pritsker 1984), but of course it is always an approximation.

Remark 2.1. We could have arrived at the same conclusions by starting with the assumption

that (Xij ,C
T
ij) is multivariate normal which implies the linear model (1), but we prefer to

emphasize Model (1) as the starting point.

A control-variate estimator of µi can be much more statistically efficient than the sample

mean of the Xij . We review some basic properties of the CV estimator under Model (1)

below.

Define the sample mean of the outputs and controls as

X̄i(n) =
1

n

n∑

j=1

Xij and C̄i(n) =
1

n

n∑

j=1

Cij .

We append “(n)” to quantities defined across n observations.

Let

β̂i(n) = S−1
Ci

(n)SCiXi(n)

where SCi(n) is the sample variance-covariance matrix of Cij and SCiXi(n) is the sample

covariance vector between Cij and Xij .

Then the CV point estimator of µi is

µ̂i(n) = X̄i(n) −
(
C̄i(n) − ξi

)T
β̂i(n)

=
1

n

n∑

j=1

[
Xij − (Cij − ξi)

T β̂i(n)
]
.

It is known that under Model (1)

E[µ̂i(n)] = µi and Var[µ̂i(n)] =

(
n − 2

n − qi − 2

)
τ 2
i

n
.

The term (n− 2)/(n − qi − 2) is known as the loss ratio, and it quantifies the impact of the

estimation of β∗
i .
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The standard unbiased estimator of Var [µ̂i(n)] is τ̂ 2
i (n)∆̂2

i (n), where

τ̂ 2
i (n) =

1

n − qi − 1

n∑

j=1

[
Xij − µ̂i(n) − (Cij − ξi)

T β̂i(n)
]2

is the residual variance estimator and

∆̂2
i (n) =

1

n
+

1

n − 1

(
C̄i(n) − ξi

)T
S−1

Ci
(n)

(
C̄i(n) − ξi

)
.

2.2 The Procedure

Suppose that a larger mean is better, and unknown to us µk ≥ µk−1 ≥ · · · ≥ µ1. We want a

procedure that guarantees to select system k with PCS ≥ 1−α whenever µk ≥ µk−1+δ, where

δ > 0 is a user-specified parameter representing the smallest difference worth detecting. In

this section we present a Generic Procedure that, under certain conditions, provides such

guarantees.

For each system i = 1, 2, . . . , k, any non-negative integers a, b, with b > a + 1, and qi × 1

vector βi, the controlled sum from the (a + 1)st sample to the bth sample is defined as

Xi [a, b,βi] =
b∑

j=a+1

[
Xij − (Cij − ξi)

T βi

]
.

We use the following controlled sum of differences between systems i and ` to construct the

tracking process in our procedure:

Xi [a, b,βi] − X` [a, b,β`] =

b∑

j=a+1

[
Xij − (Cij − ξi)

T
βi − X`j + (C`j − ξ`)

T
β`

]

=

b∑

j=a+1

[
Xij − X`j

]
−

b∑

j=a+1

[
(Cij − ξi)

T
βi − (C`j − ξ`)

T
β`

]
, (2)

where the first sum on the right-hand side of the Equation (2) is the raw sum of differences
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used in KN , and the second sum is a correction that depends on the centered controls

and βi and β`. The correction term is employed to obtain a variance reduction. Although

the continuation region is usually presented in terms of the (controlled) sum of differences

Xi [a, b,βi] − X` [a, b,β`], we will interchangeably work with the sample mean difference

X̄i[a, b,βi]− X̄`[a, b,β`], where

X̄i[a, b,βi] =
1

b − a
Xi[a, b,βi].

For all i 6= `, define the controlled sample variance, S2
i` [a, b,βi,β`], as

1

b − a− 1

b∑

j=a+1

{
Xij − (Cij − ξi)

T βi − X`j + (C`j − ξ`)
T β` − X̄i[a, b,βi] + X̄`[a, b,β`]

}2

.

Based on the notation above we present the Generic Procedure from which the procedures

in Sections 3, 4, and 6 can be derived.

The Generic Procedure

Setup: Select confidence level 1/k < 1 − α < 1, indifference-zone parameter δ > 0,

preliminary-stage sample size m0 > q + 2 (or m0 = 0 when there is no preliminary

stage), and first-stage sample size n0 such that n0 − m0 ≥ 2. Let λ = δ/2 and

h2 = 2η × (n0 − m0 − 1), where

η =
1

2

[(
2α

k − 1

)−2/(n0−m0−1)

− 1

]
.

Initialization: Let I = {1, 2, . . . , k} be the set of systems still in contention.

If m0 > 0, then

obtain (Xij ,Cij), i = 1, 2, . . . , k, j = 1, 2, . . . ,m0 (preliminary stage),

compute estimator β̂i(m0) of β∗
i and set βi = β̂i(m0), i = 1, 2, . . . , k.
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Else

set βi = β∗
i or 0 or to an arbitrary value as desired, for i = 1, 2, . . . , k.

Endif

Obtain (Xij ,Cij), i = 1, 2, . . . , k, j = m0 + 1,m0 + 2, . . . , n0 (first stage).

Compute S2
i` [m0, n0,βi,β`], for all i 6= `.

Set the observation counter r = n0 and go to Screening.

Screening: Set Iold = I. Let

I =
{
i : i ∈ Iold and X̄i[m0, r,βi] ≥ X̄`[m0, r,β`]− Wi`[m0, n0,βi,β`, r],∀` ∈ Iold, ` 6= i

}
,

where

Wi`[m0, n0,βi,β`, r] = max

{
0,

h2S2
i`[m0, n0,βi,β`]

2δ(r −m0)
− λ

}
.

Stopping Rule: If |I| = 1, then stop and select the system whose index is in I as the best.

Otherwise, take one additional observation (Xi,r+1,Ci,r+1) from each system i ∈ I, set

r = r + 1 and go to Screening.

Remark 2.2. There is a family of triangular continuation regions indexed by an integer

parameter that is called c by Kim and Nelson (2001). We have only presented the region

obtained when c = 1, which Kim and Nelson showed to be a good compromise.

In the sections that follow we specialize the Generic Procedure in various ways, prove its

validity where possible, and examine design parameters that can affect its performance.

3 A Procedure for Known β∗

In this section we assume that β∗ is known to demonstrate the potential benefits of the

controlled sum in fully sequential selection procedures. The case of unknown β∗ is discussed
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in Sections 4–6. Notice that the Generic Procedure presented above becomes KN when

m0 = 0 and βi = 0,∀i. Assuming Model (1) holds, when m0 = 0 and we know β∗ or use

arbitrary but fixed β, then this procedure is KN applied to a new normal random variable,

X ′
ij = Xij − (Cij − ξi)

Tβi. Therefore, the test statistic in the Screening step is exactly the

sum of differences between two normal random variables with means µi and µ`, so it satisfies

the requirements for the validity of KN and the desired PCS guarantee is still provided.

We next show that the procedure for known β∗ is better than KN . Notice that this pro-

cedure will tend to have smaller S2
ik which narrows and shortens the continuation region. We

expect the continuation region of the procedure with known β∗ to be completely contained

within the region of KN , therefore the area of the continuation region is a good basis for

comparison because we have more opportunities to eliminate inferior systems earlier when

the procedure has a smaller continuation region, provided the process drift is unchanged,

as it is here. To simplify the result for the purpose of illustration, we assume that Model

(1) holds and the systems are simulated independently. For KN we know the area of the

continuation region A in Figure 1 is (ignoring rounding)

(
h2S2

ik

2δ

)(
h2S2

ik

δ2

)
=

h4S4
ik

2δ3

(Kim and Nelson, 2001). For normally distributed data,

E[S4
ik] = σ4

ik ×
(n0 + 1)

(n0 − 1)
.

Therefore, we obtain

E[A]KN = E

[
h4S4

ik

2δ3

]
=

h4

2δ3
× (n0 + 1)

(n0 − 1)
× σ4

ik,

where σ2
ik = Var[Xkj − Xij ] = σ2

k + σ2
i .
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For the procedure with known β∗,

E[A]β
∗ = E

[
h4S4

ik[0, n0,β
∗
k,β

∗
i ]

2δ3

]
=

h4

2δ3
× (n0 + 1)

(n0 − 1)
× τ 4

ik,

where

τ 2
ik = Var

[
Xkj − (Ckj − ξk)

T β∗
k − Xij + (Cij − ξi)

T β∗
i

]

= Var [ηkj − ηij ]

=
(
1 − R2

k

)
σ2

k +
(
1 − R2

i

)
σ2

i ,

where R2
i is the square of the multiple correlation coefficient between Xij and Cij . For

simplicity, we assume that R2
i = R2, for i = 1, 2, . . . , k. Then,

E[A]β∗ = E[A]KN ×
(
1 − R2

)2
.

Thus, the expected area of the continuation region for the Generic Procedure with known β∗

is smaller than that for KN , so we expect to be more efficient by applying controlled sums

instead of raw sums. Notice that larger correlation between the outputs and the controls

leads to a smaller continuation region, so choosing effective control variates is important.

See Añonuevo and Nelson (1988), Nelson (1989) and Bauer and Wilson (1992) for a general

discussion of selecting good control variates.

Also notice that an arbitrarily chosen β could increase the expected area of the contin-

uation region. This is easiest to see if we simplify the analysis even further by assuming

that systems i and k are identical, but still independently simulated. Then σ2
ik = 2Var[X]

and τ 2
ik = 2

(
Var[X] + βT Var[C]β − 2βT Cov[C,X]

)
. Therefore, τ 2

ik ≥ σ2
ik if βTVar[C]β ≥

2βTCov[C,X], which occurs, for instance, if β = 3β∗. This motivates the need for the

procedures in Sections 4–6 that estimate β∗.
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4 A Procedure for Unknown β∗

In most stochastic simulation experiments β∗ is not known in advance. Therefore, we need to

spend some effort estimating β∗ which is not required for KN . In this section we introduce

a fully sequential procedure that allows unknown β∗ and also guarantees the PCS; some

guidelines for the design of this procedure are also discussed in the Appendix.

The Controlled Sequential Selection procedure (CSS) collects preliminary-stage samples

(Xij ,Cij), j = 1, 2, . . . ,m0 to compute β̂i(m0) for each system, and then obtains an addi-

tional n0−m0 first-stage samples which are used to compute the controlled sample variance,

S2
i`[m0, n0, β̂i(m0), β̂`(m0)]. Figure 2 shows the continuation region for CSS.

Why do we need a preliminary stage, since it would seem to be more efficient to set

m0 = 0 and compute both β̂i(n0) and S2
i`[0, n0, β̂i(n0), β̂`(n0)] from the first-stage data?

The reason is that the sample variance will not have the statistical properties we need to

prove the validity of CSS, in particular it is not an unbiased estimator of

1

r
Var

[
Xi[0, r, β̂i(n0)] −X`[0, r, β̂`(n0)]

]

nor does it have a scaled chi-squared distribution conditional on β̂i(n0) and β̂`(n0).

We already know the procedure is valid for known β∗ or arbitrary, fixed β. Therefore, it

is natural to expect that it is valid when β̂i(m0) is estimated from an independent sample.

Theorem 1. If Model (1) holds, then the CSS procedure selects system k with probability

≥ 1 − α whenever µk − µk−1 ≥ δ.

The proof is provided in the Appendix.

Remark 4.1. This procedure is statistically valid with or without the use of CRN. If the

systems are simulated independently, then we can replace the value of η in the Setup step

with

η =
1

2

[[
2 − 2(1 − α)1/(k−1)

]−2/(n0−m0−1) − 1
]
.
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Figure 2: Continuation region for CSS

In this case, the value of η is decreased which makes the continuation region smaller, therefore

the procedure may be terminated more quickly. This result follows directly from Theorem

2 of Kim and Nelson (2001).

It is important to notice that the variance of X̄i[m0, r, β̂i(m0)] is different from the vari-

ance of the usual CV estimator µ̂i(r). Under Model (1) it is known that

E
[
X̄i[m0, r, β̂i(m0)]

]
= µi and Var

[
X̄i[m0, r, β̂i(m0)]

]
=

(
m0 − 2

m0 − qi − 2

)
τ 2
i

r −m0

(Ripley 1987). Thus, the loss ratio contains the preliminary-stage sample size m0 instead of

the overall sample size r. Clearly it is important that m0 may not be too small to make the

loss insignificant.

The advantage of CSS is that we can exploit CVs and preserve the required PCS, but the

disadvantage is that we need to collect some preliminary samples to estimate β̂i(m0) before

the screening process is initiated. These preliminary-stage samples are acquired only for the

purpose of estimating β∗ and we can not employ them to eliminate systems. Furthermore, a

suitable size for the preliminary-stage samples needs to be determined. In the appendix we

provide an analysis that suggests appropriate preliminary-stage sample sizes; for instance,

12



16 ≤ m0 ≤ 20 when there are 3 controls. In the appendix we also show that if we follow

these guidelines then there is little potential benefit from updating the estimator β̂ after the

preliminary stage.

5 A Controlled Sequential Selection Procedure Com-

bined with KN

CSS is a statistically valid procedure that requires taking preliminary-stage samples to cal-

culate β̂i(m0) before we enter the screening process; therefore these m0 samples are wasted.

In this section we propose a controlled sequential procedure in which the preliminary-stage

samples can be exploited while still securing the required PCS. This procedure is basically

the combination of KN and CSS, so we call it CSS-C.

In CSS-C the m0 preliminary-stage samples are collected to compute β̂i(m0) and the raw

sample variance is utilized to set up the continuation region for KN . The KN procedure

is then performed from observation m0 to observation n0 (first stage); meanwhile, the con-

trolled sample variance S2
ik[m0, n0, β̂i(m0), β̂k(m0)] is obtained and both KN and CSS are

implemented in parallel after the first stage (observation n0). A system is eliminated when

either KN or CSS eliminates it, and the procedure terminates when there is only one system

remaining. Figure 3 illustrates the continuation region for CSS-C.

The advantage of CSS-C is that it gives us an opportunity to eliminate inferior systems

in the first stage. The disadvantage is that it uses the conservative Bonferroni inequality to

combine KN and CSS to guarantee the overall PCS. This procedure is more desirable when

there are a large number of systems whose means are expected to differ widely. In that case,

we expect the savings gained through eliminating inferior systems in the first stage to more

than offset the losses incurred in applying the Bonferroni inequality. We present CSS-C in

detail in the Appendix.

In CSS-C we apply KN to screen out noncompetitive systems in the first stage. Then

13
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after the first stage KN and CSS are applied to the surviving systems to select the best

system. We spend α0 of the overall allowable probability of incorrect selection α on KN , and

the other α − α0 on CSS (typically we take α0 = α/2). The following analysis investigates

the effect of splitting α in CSS-C.

Let n1 = n0 − m0, be the number of samples between the preliminary and first stages,

and let N denote the maximum number of samples the could be required for system i to

eliminate system k or vice versa for a fully sequential procedure (see Figure 2). Then

E[N ]CSS = m0 +
2η1(n1 − 1)

(
m0−2

m0−q−2

)
τ 2
ik

δ2
,

where

η1 =
1

2

[(
2α

k − 1

)−2/(n1−1)

− 1

]
.

For CSS-C the maximum number of samples that the controlled sum can take until the

procedure stops is larger than CSS because a smaller probability of incorrect selection is

14



specified. If we take α0 = α/2, then

E[N ]CSS−C = m0 +
2η2(n1 − 1)

(
m0−2

m0−q−2

)
τ 2
ik

δ2
,

where

η2 =
1

2

[(
α

k − 1

)−2/(n1−1)

− 1

]
.

We can show that

E[N ]CSS−C

E[N ]CSS
≈ η2

η1
.

Table 1 gives the value of η2/η1 as a function of n1 for different values of k when α = 0.05

and α0 = α/2. This table shows that the ratio η2/η1 decreases as the number of systems

and the number of samples in the first stage increase, and it also illustrates that once we

reach, say, 15 to 30 observations in the first stage, there is not much potential reduction

in this ratio from increasing n1 further within a realistic range of first-stage sample sizes

(n1 ≤ 100). Therefore, 15 to 30 samples are recommended to take in the first stage to

moderate the disadvantage of employing the Bonferroni inequality.

6 A Controlled Sequential Selection Procedure with

Approximate Variance Estimator

To avoid wasting samples in the preliminary stage, we derive the Controlled Sequential

Selection Procedure with Approximate Variance Estimator (CSS-A). CSS-A is similar

to CSS except that it only requires a first stage (sample size n0 > q + 2) to estimate

the β̂i(n0) and an approximate variance estimator. For the Generic Procedure, we set

m0 = 0 in the Setup step, set βi = β̂i(n0) and replace S2
i`[0, n0, β̂i(n0), β̂`(n0)] with

n0

(
∆̂2

i (n0)τ̂
2
i (n0) + ∆̂2

` (n0)τ̂
2
` (n0)

)
in the Initialization step.

The internal variance estimator, r
(
n0∆̂

2
i (n0)τ̂

2
i (n0)

)
, is a biased estimator of Var

[
Xi[0, r, β̂i(n0)]

]
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Table 1: η2/η1 as a function of n1 = n0 − m0 when 1 − α = 0.95 and α0 = α/2.

k
n1 2 10 50 100 500

2 4.03 4.00 4.00 4.00 4.00
5 1.60 1.46 1.43 1.43 1.42
10 1.42 1.26 1.22 1.21 1.20
15 1.37 1.22 1.18 1.17 1.15
20 1.35 1.20 1.16 1.15 1.13
30 1.33 1.18 1.14 1.13 1.11
40 1.32 1.18 1.13 1.12 1.10
50 1.32 1.17 1.13 1.12 1.09
60 1.32 1.17 1.13 1.11 1.09
70 1.31 1.17 1.12 1.11 1.09
80 1.31 1.16 1.12 1.11 1.09
90 1.31 1.16 1.12 1.11 1.09
100 1.31 1.16 1.12 1.11 1.09

for any observation counter r > n0, leading to the unfavorable consequence that the PCS

guarantee may not be attained. However, we expect the bias to be mild when n0 is not too

small, because

β̂(n0)
w.p.1−→ β∗ as n0 → ∞ (Avramidis and Wilson 1993), and

n0∆̂
2(n0)τ̂

2(n0)
p−→ τ 2 as n0 → ∞ (Nelson 1990),

where
w.p.1−→ denotes convergence with probability 1 and

p−→ denotes convergence in probabil-

ity. Thus, if n0 is not too small, then Xij−(Cij − ξi)
T β̂i(n0) behaves like Xij−(Cij − ξi)

T β∗
i

and r
(
n0∆̂

2
i (n0)τ̂

2
i (n0)

)
is approximately rτ 2

i which is equal to Var
[
Xi[0, r,β

∗
i ]

]
. Therefore,

CSS-A should perform like a valid procedure with known (β∗
i , τ 2

i`) if n0 is not too small, a pro-

cedure for which we provide details in the Appendix. It is worth noting that S2[0, n0, β̂(n0)]

is also a strongly consistent estimator of τ 2. However, we still choose to use n0∆̂
2(n0)τ̂

2(n0)

because it is an unbiased estimator of 1/n0Var
[
X[0, n0, β̂(n0)]

]
and has a scaled chi-squared

distribution, which allows us to select an appropriate number of degrees of freedom.
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CSS-A is likely to be conservative so that the required PCS is still maintained even with

a biased variance estimator. Empirical evaluation shows that CSS-A performs well in most

configurations.

If we look at the expected value of the largest possible sample size N and assume that

CVs explain all effects of CRN, we find that

E[N ]CSS−A = E




h2
[
n0∆̂

2
i (n0)τ̂

2
i (n0) + n0∆̂

2
k(n0)τ̂

2
k (n0)

]

δ2


 =

2η × (n0 − 1)
(

n0−2
n0−q−2

)
τ 2
ik

δ2
.

To facilitate the analysis we assume that n0(CSS-A) = m0(CSS) = n0(CSS)/2; then the

following result holds:

E[N ]CSS−A = E[N ]CSS − m0,

which shows less sampling is expended for CSS-A by the amount of the preliminary-stage

sample size m0.

7 Empirical Evaluation

In this section we perform an empirical evaluation to compare the CV procedures presented

in this paper to KN and to each other.

The systems are represented by various configurations of k normal distributions; in all

cases, system k was the best (had the largest true mean). Let Xi be a simulation observation

from system i, for i = 1, 2, . . . , k. For simplicity, we assume that there is q = 1 control variate

and the output can be represented as

Xi = µi + (Ci − ξi)βi + ηi,

where {ηi, i = 1, 2, . . . , k} are N(0, σ2
η) random variables. The {Ci, i = 1, 2, . . . , k} are

N(ξi, σ
2
c ) random variables and independent of {ηi, i = 1, 2, . . . , k}. The squared correlation
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coefficient between Xi and Ci is R2
(x,c).

We evaluated each procedure on different configurations of the systems, examining factors

including the number of systems k, the practically significant difference δ, the preliminary-

stage sample size m0, the first-stage sample size n1 = n0 − m0, the variance of controls σ2
c ,

the variance of residuals σ2
η, and the configuration of the means µi. We also examined the

impact of R2
(x,c) on the performance of each procedure. Note that R2

(x,c) = β2σ2
c/(β

2σ2
c +σ2

η).

The configurations, the experiment design, and the results are described below.

7.1 Configurations and Experiment Design

We used the slippage configuration (SC) of the true means of the systems to investigate a

difficult scenario for fully sequential selection procedures. In the SC, the mean of the best

system µk was set to exactly δ or a multiple of δ, while µ1 = µ2 = · · · = µk−1 = 0. Subsequent

experiments were performed with µk = δ. These experiments with the slippage configuration

showed that CVs can make the fully sequential procedure more efficient even under the most

difficult situation. To examine the efficiency of these procedures in eliminating inferior

systems, monotone-decreasing means (MDM) were also used. In the MDM configuration,

the differences between the means of any two adjacent systems, µi − µi−1 were set to δ/γ

where γ was a constant in the experiment design. For later experiments, the value γ = 1

was used.

We chose the first-stage sample size to be n1 = 20, for i = 1, 2, . . . , k. The mean of

the controls, ξi, was set to be 0, and βi was set to be 1, for i = 1, 2, . . . , k. The number of

systems in each experiment varied over k = 2, 5, 10, 25, 100. The indifference-zone parameter,

δ, was set to δ =
√

(σ2
c + σ2

η)/n1, where σ2
c is the variance of controls and σ2

η is the variance

of residuals; therefore, δ is one standard deviation of the first-stage sample mean. For

each configuration, 500 macroreplications (complete repetitions) of the entire fully sequential

procedure were carried out. In all experiments, the nominal probability of correct selection

was set at 1 − α = 0.95. We took α0 = α/2 in CSS-C. To compare the performance of
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the procedures we recorded the estimated probability of correct selection (PCS), the average

number of samples per system (ANS), and the percentage of systems that survived after

first-stage sampling (PSS) which is only meaningful for CSS-C. Notice that ANS is used to

gauge a procedure’s overall efficiency, while PSS gauges the effectiveness of the first-stage

KN component in screening out noncompetitive systems for CSS-C.

7.2 Summary of Results

We do not attempt to present comprehensive results from such a large simulation study.

Instead, we present details of some typical examples that emphasize the key conclusions.

7.2.1 Effect of m0

We examined the effect of different values of the preliminary-stage sample size m0 for CSS

and CSS-C and compared them to KN and CSS-A with the same first-stage sample size

n1 = 20. Notice that the derivation in Appendix A.2 shows that the optimal preliminary-

stage sample size is m∗
0 = 10 when q = 1, n1 = 20. As shown in Table 2, all the procedures

achieve the required PCS with different m0, since the validity has nothing to do with the

value of β̂i(m0). However, if m0 deviates much from m∗
0, in this case less than 6 or greater

than 30, then CSS and CSS-C will be degraded in terms of ANS; their performance may

even be worse than KN . They tend to have lower ANS than KN when m0 is in the range

of 8 to 20.

7.2.2 Effect of Control Variates

We evaluated the effect of control variates for the three CV procedures and compared them

to KN under the slippage configuration. The results in Appendix A.2 suggest that R2
(x,c)

needs to be no less that 0.13 and no more than 0.26 for CSS to be more efficient than

KN when n1 = 20, m0 = 10, and q = 1. As Table 3 shows, CSS and CSS-A outperform

KN easily with R2
(x,c) ≥ 0.2 in this example. However, CSS-C needs to have a larger
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Table 2: Effect of m0 for CSS and CSS-C in the SC with µk = δ , k = 10, n1 = 20,
R2

(x,c) = 0.4, and nominal PCS = 0.95.

m0 Procedure PCS ANS PSS
KN 0.96 151

CSS-A 0.98 98
4 CSS 0.96 186

CSS-C 0.96 184 0.98
6 CSS 0.96 127

CSS-C 0.97 137 0.98
8 CSS 0.97 118

CSS-C 0.98 125 0.99
10 CSS 0.96 114

CSS-C 0.98 120 0.99
12 CSS 0.97 112

CSS-C 0.97 124 0.99
14 CSS 0.97 113

CSS-C 0.97 122 0.99
30 CSS 0.97 124

CSS-C 0.97 128 0.98
40 CSS 0.96 133

CSS-C 0.98 129 0.97
50 CSS 0.97 143

CSS-C 0.98 136 0.96

multiple correlation coefficient (R2
(x,c) ≥ 0.4) to outperform KN , since the SC configuration

is especially undesirable for CSS-C. Of course, a larger R2
(x,c) makes these procedures even

more efficient because the CVs can explain more variability of the outputs. Notice that

PSS of CSS-C is not affected by R2
(x,c) because the CVs are not involved in the first-stage

screening process.

7.2.3 Comparisons Across All Configurations of the Means

The conclusions in this section are based on Table 4. Here we compare the four procedures

under the slippage configuration and monotone-decreasing means configuration when k =

2, 5, 10, and 100. Notice that the SC and MDM are identical when k = 2. The experiments
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Table 3: Effect of control variates for CV procedures in comparison with KN under the SC
with µk = δ , k = 10, m0 = 10, n1 = 20, and nominal PCS = 0.95.

R2
(x,c) Procedure PCS ANS PSS

KN 0.96 151
0.2 CSS 0.97 146

CSS-A 0.98 134
CSS-C 0.98 160 0.99

0.4 CSS 0.96 114
CSS-A 0.98 98
CSS-C 0.98 120 0.99

0.6 CSS 0.96 80
CSS-A 0.97 67
CSS-C 0.98 89 0.99

0.8 CSS 0.96 46
CSS-A 0.97 35
CSS-C 0.97 52 0.99

showed that all procedures require greater ANS as the number of systems increases in the

SC. However, for the MDM configuration these procedures need fewer samples from each

system when the number of systems increases since the additional systems are far from the

best.

We find that CSS-A is superior to the other procedures across most of the configurations

we examined in terms of ANS. Results in Section 6 suggest that E[ANS]CSS−A = E[ANS]CSS−

m0, and this is consistent with what we have seen in the experiments. Notice that the

estimated PCS of CSS-A is greater than 0.95 even under the SC with k = 2 and µ2−µ1 = δ,

which is the most difficult case to deliver the desired PCS since the inequalities used to extend

to k > 2 tend to make all of these procedures conservative as k increases.

The performance of CSS-C is not better than the other CV procedures under the slip-

page configuration because of the Bonferroni inequality, and the ratio of E[ANS]CSS−C to

E[ANS]CSS is very close to the result derived in Section 5. We see that CSS-C dominates un-

der the MDM configuration with k = 100; the PSS value indicates that the procedure is able

to eliminate many inferior systems in the first stage (KN ), thus reducing the overall ANS
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Table 4: Comparisons among all configurations of the means with m0 = 10, n1 = 20,
R2

(x,c) = 0.4, and nominal PCS = 0.95.

k=2 k=5 k=10 k=100
Procedure Measure SC SC MDM SC MDM SC MDM

KN PCS 0.95 0.95 0.98 0.96 0.99 1 1
ANS 67 127 81 151 72 210 41

CSS PCS 0.96 0.96 0.99 0.97 0.99 1 1
ANS 58 94 65 113 56 149 36

CSS-A PCS 0.96 0.96 0.99 0.98 0.99 1 1
ANS 45 81 52 98 45 162 27

CSS-C PCS 0.97 0.98 0.99 0.99 1 1 1
ANS 65 107 72 120 58 160 21
PSS 0.96 0.98 0.93 0.99 0.79 0.99 0.16

dramatically. Therefore, CSS-C could be more or less efficient than the other procedures,

depending on how much we gain from screening out systems in the first stage.

8 An Illustrative Example

In this section we provide a queueing example to compare our procedures with NSGS, TNS-I

and KN . NSGS is a combined sample-mean-based procedure due to Nelson et al. (2001)

that uses a screening procedure with sample means to eliminate uncompetitive systems after

the first stage of sampling, and then applies Rinott’s IZ selection procedure (Rinott 1978)

in the second stage. TNS-I is a two-stage CV combined procedure presented in Tsai, Nelson

and Staum (2008). Both NSGS and TNS-I allow unknown and unequal variances, but CRN

is not exploited.

Consider the M/M/s/c queue with Poisson arrivals, exponentially distributed service

times, s servers, a capacity of c customers, and first-come, first-served queueing discipline.

The customers arrive with rate λ. The service rate for an individual server is µ. Each
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procedure is performed on ten different configurations of the systems in which λ/sµ = 4/5

where the performance measure is the steady-state mean of the waiting time in system. The

capacity c is set to 15. The ten configurations along with their true expected waiting times,

which can be analytically computed, are given in Table 5. System 1 is obviously the best

system.

To mitigate the initial transient bias, we initialize the simulation in steady state. That

is, for each replication we sample the initial condition in accordance with that steady-state

distribution of the number of customers in the system. An average waiting time for thirty

customers is used as the output on each replication. We use the average service time as the

control on replication j, which means

Xij =

∑30
m=1 Wijm

30
and Cij =

∑30
m=1 Sijm

30
,

where Wijm is the waiting time in system for customer m of replication j from system i and

Sijm is the service time for customer m of replication j from system i. The preliminary-stage

sample size m0 for CSS and CSS-C is set as 20, and we set the first-stage sample size n1 = 10

for all procedures. We choose the indifference-zone parameter δ to be 0.1 and CRN is not

applied.

Table 6 gives the results of the simulation study with 100 complete macroreplications

and nominal PCS = 0.95. We also provide the estimated standard error of ANS to illustrate

that there is a significant difference.

The observed PCS for all procedures is greater than 0.95 except for CSS-A. Comparing

to the experimental results of Section 7 in which CSS-A works very well with the linear

and normal assumption (Model (1)), the bias problem appears to be exacerbated in the

queueing example. To be more specific, X̄ [0, n0, β̂(n0)] and n0∆̂
2(n0)τ̂

2(n0) will be biased

when linearity fails; therefore, the observed PCS for CSS-A deviates from the nominal

PCS greatly. Figure 4 shows a scatter plot of Xij and Cij for system 1 which illustrates the
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Table 5: The ten queueing systems and their expected waiting times in steady state.

System i λ s µ E[W ]
1 4 1 5 0.88
2 4 2 5/2 0.98
3 4 3 5/3 1.10
4 4 4 5/4 1.24
5 4 5 1 1.38
6 4 6 5/6 1.52
7 4 7 5/7 1.67
8 4 8 5/8 1.81
9 4 9 5/9 1.96
10 4 10 5/10 2.10

Table 6: Results for NSGS, TNS-I, KN , CSS, CSS-C and CSS-A in 100 trials with δ = 0.1,
m0 = 20, n1 = 10 and 1 − α = 0.95.

Procedure PCS ANS ŝe(ANS) PSS
NSGS 0.98 158 6.1 0.9
TNS-I 0.99 90 5.4 0.4
KN 0.99 89 2.9
CSS 0.96 37 0.4
CSS-C 0.96 36 0.4 0.7
CSS-A 0.90 42 2.1

nonlinear relationship. Notice that the unbiasedness of the controlled sum and the controlled

sample variance for CSS and CSS-C do not depend on linearity. The efficiencies of the three

CV procedures are similar and superior to NSGS, TNS-I and KN in terms of ANS. There is

not much difference between the performance of TNS-I and KN . TNS-I can eliminate more

systems than CSS-C in the first stage (PSS=0.4 vs. PSS=0.7); however, CSS-C has smaller

ANS than TNS-I because our CV fully sequential selection procedure is much more efficient

than the CV selection-of-the-best procedure in Nelson and Staum (2006).
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Figure 4: Scatter plot for average waiting time vs. average service time from system 1.

9 Conclusions

In this paper we have proposed a general methodology and several specific procedures for

applying control variates in a fully sequential indifference-zone selection procedure. We

recommend using CSS-C only when there are a very large number of widely spaced systems

so that the benefits of screening during the first stage are realized. For general use we

recommend CSS. We showed that these two procedures reduce the required sample size

with respect to KN while still delivering the PCS guarantee. An approximate procedure

called CSS-A may require fewer observations, and the experiments showed that it performed

well when all assumptions are satisfied even though we cannot prove its validity. On the

other hand, when the linearity assumption is violated, it seems risky to use CSS-A.

Additional refinement of these procedures may be possible. For instance, the variance-

dependent sampling approach in the fully sequential procedure of Hong (2006) could be

adapted to the controlled sum.
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A Appendix

A.1 Proof of CSS

We first prove Theorem 1. For random β independent of first-stage and later data,

PCS =
∫

PCS(β) dFβ

≥
∫

(1 − α) dFβ (3)

= 1 − α.

Inequality (3) is true because PCS(β) ≥ 1−α for arbitrary but fixed β as a direct consequence

of Kim and Nelson (2001).

A.2 Choice of m0 for CSS

In CSS, the experimenter needs to specify the preliminary-stage sample size m0. The more

data we demand in the preliminary stage, the smaller the expected value of the maximum

additional sample size is because of the loss ratio, but the more data are wasted before

the screening process begins. In this section we try to provide guidelines for selecting m0

so that CSS will be efficient with respect to KN . We do this by looking at the area

of the continuation region, and also the expected value of the maximum sample size, for

CSS vs. KN , and make rough approximations. The usefulness of these approximations is

demonstrated in the empirical results.
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To simplify the analysis, we assume that the systems are simulated independently, focus

on systems i and k, and assume that qi = q and R2
i = R2, for i = 1, 2, . . . , k. Let n′

0 represent

the first-stage sample size in KN . Then

E[A]KN =
h4

2δ3
× (n′

0 + 1)

(n′
0 − 1)

× σ4
ik =

2η′2(n′
0 − 1)(n′

0 + 1)σ4
ik

δ3
, (4)

where

η′ =
1

2

[(
2α

k − 1

)−2/(n′
0−1)

− 1

]
.

For convenience, let n1 = n0 − m0 be the first-stage sample size for CSS and let S2
CV =

S2
ik[m0, n0, β̂i(m0), β̂k(m0)]. Then

E[A]CSS = E

[(
m0 +

2η(n1 − 1)S2
CV

δ2

)
× η(n1 − 1)S2

CV

δ

]

=
ηm0(n1 − 1)E [S2

CV ]

δ
+

2η2(n1 − 1)2E [S4
CV ]

δ3

≤ ηm0(n1 − 1)E [S2
CV ]

δ
× 2ηE [S2

CV ]

δ2
+

2η2(n1 − 1)2E [S4
CV ]

δ3
(5)

(when δ is small enough to make 2ηE [S2
CV ] /δ2 ≥ 1)

=
2η2m0(n1 − 1)E2 [S2

CV ]

δ3
+

2η2(n1 − 1)2E [S4
CV ]

δ3

≤ 2η2(m0 + n1 − 1)(n1 − 1)E [S4
CV ]

δ3
(6)

≈
2η2(m0 + n1 − 1)(n1 − 1)

(
m0−2

m0−q−2

)2

(1 − R2)2σ4
ik

δ3
, (7)

where

η =
1

2

[(
2α

k − 1

)−2/(n1−1)

− 1

]
.

We know that there always exists a δ small enough so that Inequality (5) holds, and the

choice of m0 is most critical when δ is small, so we assume this to be the case for the purpose
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of analysis. Inequality (6) holds because E [S4
CV ] ≥ E2 [S2

CV ], and Approximation (7) follows

because

E
[
S4

CV

]
= Var

[
S2

CV

]
+ E

[
S2

CV

]2 ≈ E
[
S2

CV

]2
=

(
m0 − 2

m0 − q − 2

)2

(1 − R2)2σ4
ik,

since Var [S2
CV ] is decreasing on the order of τ 4

ik/(m0)
2 when n1 is not too small, whereas

E [S2
CV ]

2
is closer to τ 4

ik with increasing m0.

Our goal is to make the area of the continuation region of CSS smaller than KN . To

put the procedures on an equal footing, we choose first-stage sample sizes for CSS and KN

such that n′
0 = n1; therefore η′ = η. We find (7) ≤ (4) if

(1 − R2)2 ≤ (m0 − q − 2)2(n1 + 1)

(m0 − 2)2(m0 + n1 − 1)
. (8)

To maximize the RHS of (8), the optimal m0 is (ignoring rounding)

m∗
0 =

3q + 4 +
√

q(9q + 8n1 + 8)

2
,

which is an increasing function of q and n1, and increasing faster in q. Consequently, if we

use preliminary sample size m∗
0, then CSS will tend to be more efficient than KN when

R2 ≥ 1 −

√
(m∗

0 − q − 2)2(n1 + 1)

(m∗
0 − 2)2(m∗

0 + n1 − 1)
≡ R2

A(n1,m
∗
0, q).

Notice that m∗
0 is also a function of n1 and q, and R2

A is decreasing in n1, but increasing in

q.

This measure is unfair to CSS because a larger area of the continuation region is utilized

from Inequalities (5) and (6). Therefore, the threshold R2
A represents a very conservative

lower bound on the required R2 to make CSS superior to KN . On the other hand, if we

look at the maximum number of observations until the procedure terminates, N , and use
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m∗
0, then

E[N ]CSS = E

[
m∗

0 +
2η(n1 − 1)S2

CV

δ2

]

≥ E

[
2η(n1 − 1)S2

CV

δ2

]
(9)

=
2η(n1 − 1)E [S2

CV ]

δ2

=
2η(n1 − 1)

(
m∗

0−2

m∗
0−q−2

)
(1 −R2)σ2

ik

δ2
, (10)

and

E[N ]KN =
2η′(n′

0 − 1)σ2
ik

δ2
. (11)

Under the same assumptions, we can show that (10) ≤ (11) if

R2 ≥ 1 − m∗
0 − q − 2

m∗
0 − 2

≡ R2
B(m∗

0, q),

which demonstrates that the threshold R2
B is just the standard loss ratio. Notice that R2

B is

not as conservative as R2
A since a smaller maximum sample size is used by ignoring m∗

0 in

Inequality (9). This approximation makes the most sense when there are a number of very

close systems so that the procedure may reach the largest observation N .

We expect the lower bound on R2 such that CSS is more efficient that KN to be between

R2
A and R2

B, provided we use m∗
0 preliminary stage samples. Table 7 lists the value of m∗

0,

R2
A, and R2

B as a function of the first-stage sample size n1 = n0 − m0 for q = 3 controls.

Notice that in the typical first-stage sample size range of 10–30, the range of m∗
0 is 16–21,

which is our recommended setting. Notice also that if the first-stage sample size is 20 or

greater, then the controls do not have to be exceptionally effective (large R2) for CSS to

be more effective than KN , again provided we use m∗
0. Our empirical results support these
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Table 7: m∗
0, R

2
A and R2

B as a function of the first-stage sample size n1 when q = 3.

q = 3
n1 m∗

0 R2
A R2

B

2 13 0.66 0.27
3 13 0.62 0.27
5 14 0.57 0.25
8 15 0.51 0.23
10 16 0.48 0.21
15 17 0.43 0.20
20 19 0.39 0.18
25 20 0.36 0.17
30 21 0.34 0.16
35 22 0.32 0.15
40 23 0.30 0.14
45 24 0.29 0.14
50 25 0.28 0.13
60 26 0.26 0.13
80 29 0.23 0.11
100 32 0.21 0.10

conclusions.

A.3 Why not update β̂ in CSS?

In CSS we calculate β̂(m0) from preliminary-stage samples, and then use that β̂(m0) in the

controlled sum until the procedure terminates. Alternatively, we could update β̂(r) every

time we acquire an additional observation, or at least update β̂(r) once in a while. In the

limit, such a procedure should perform similarly to the procedure with known β∗ because

β̂(r) is getting closer and closer to β∗. However, we cannot prove the small-sample validity

of updating, and even if we could establish its asymptotic validity, the computational effort

to implement it would be significant. Moreover, there is not much potential benefit from

doing so. The best case for updating β̂(r) is that it attains β∗ essentially right after the

preliminary stage (first update); call this the β∗(m0) procedure. We compare this case with

CSS by looking at the expected value of the largest possible terminal sample size N that
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can be reached, namely

E[N ]CSS = E

[
m0 +

h2S2
ik[m0, n0, β̂i(m0), β̂k(m0)]

δ2

]
= m0 +

h2
(

m0−2
m0−q−2

)
τ 2
ik

δ2

E[N ]β
∗
(m0)

= E

[
m0 +

h2S2
ik[m0, n0,β

∗
i ,β

∗
k]

δ2

]
= m0 +

h2τ 2
ik

δ2
.

We find the only difference is the usual loss factor. Therefore, we can argue that there is not

much advantage to obtain from updating provided m0 is not too small. For instance, we can

choose m0 = 20 when q = 1, which implies that the worst case for CSS is E[N ]CSS ≈ 1.06

E[N ]β
∗
(m0)

.

However, updating the variance estimator could be helpful since asymptotically the pro-

cedure would converge to a known-variance case; see Kim and Nelson (2006) for a version

of KN with variance updating. If we were to try to adapt the same approach to CSS then

both β̂ and S2
ik would need to be updated.

A.4 Proof of CSS -C

We prove the validity of CSS-C. Let ICS denote the event that an incorrect selection is made

when the procedure terminates. Then

Pr{ICS} = Pr{ICS with exit through KN or CSS}

≤ Pr{ICS with exit through KN} + Pr{ICS with exit through CSS} (12)

≤ α0 + (α − α0) (13)

= α.
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The Bonferroni inequality justifies Inequality (12), while Inequality (13) follows because of

the validity of KN and Theorem 1.

A.5 CSS -C Procedure

Based on the notation in Section 2, we describe CSS-C in detail.

Procedure CSS-C

Setup: Select confidence level 1/k < 1 − α < 1, α = α1 + α2, indifference-zone parameter

δ > 0 and preliminary-stage sample size m0 > q+2. Let λ = δ/2 and h2
1 = 2η [α0,m0]×

(m0 − 1), where

η [α0,m0] =
1

2

[(
2α0

k − 1

)−2/(m0−1)

− 1

]
.

KN Initialization: Let I = {1, 2, . . . , k} be the set of systems still in contention.

Obtain (Xij ,Cij), i = 1, 2, . . . , k, j = 1, 2, . . . ,m0 (preliminary stage).

Compute estimator β̂i(m0) of β∗
i and set βi = β̂i(m0), i = 1, 2, . . . , k.

Compute S2
D(i, `) = S2

i` [0,m0, 0, 0], for all i 6= `.

Select the first-stage sample size n0 such that n0−m0 ≥ 2, set the observation counter

r = m0 and go to KN Screening.

KN Screening: Set Iold = I. Let

I =
{
i : i ∈ Iold and X̄i[0, r, 0] ≥ X̄`[0, r, 0]− W C

i`

[
h2

1, S
2
D(i, `), r

]
,∀` ∈ Iold, ` 6= i

}
,

where

W C
i`

[
h2

1, S
2
D(i, `), r

]
= max

{
0,

h2
1S

2
D(i, `)

2δr
− λ

}
.

Keep adding data and performing screening until the observation counter r = n0.
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CSS Initialization: Let h2
2 = 2η [α1, n0 − m0] × (n0 − m0 − 1), and for all i 6= ` still in I,

retrieve the n0−m0 observations Xij ,Cij, j = m0 +1,m0 +2, . . . , n0 maintained in the

first stage to compute S2
CV (i, `) = S2

i`[m0, n0,βi,β`].

Go to KN + CSS Screening.

KN + CSS Screening: Set Iold = I. Let

IKN =
{
i : i ∈ Iold and X̄i[0, r, 0] ≥ X̄`[0, r, 0] − W C

i`

[
h2

1, S
2
D(i, `), r

]
,∀` ∈ Iold, ` 6= i

}
,

I =
{
i : i ∈ IKN and X̄i[m0, r,βi] ≥ X̄`[m0, r,β`]− W C

i`

[
h2

2, S
2
CV (i, `), r

]
,∀` ∈ IKN , ` 6= i

}
.

Stopping Rule: If |I| = 1, then stop and select the system whose index is in I as the best.

Otherwise, take one additional observation (Xi,r+1,Ci,r+1) from each system i ∈ I, set

r = r + 1 and go to KN + CSS Screening.

A.6 Procedure for known (β∗, τ 2)

We present a procedure with known β∗ and τ 2 which helps justify the approximate validity

of CSS-A.

Procedure for known (β∗, τ 2)

Setup: Select confidence level 1/k < 1 − α < 1, indifference-zone parameter δ > 0. Let

λ = δ/2 and h2 = 2η, where

η = − ln

(
2α

k − 1

)
.

Initialization: Let I = {1, 2, . . . , k} be the set of systems still in contention.

Obtain (Xi1,Ci1), i = 1, 2, . . . , k.

Set the observation counter r = 1 and go to Screening.
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Screening: Set Iold = I. Let

I =
{
i : i ∈ Iold and X̄i[0, r,β

∗
i ] ≥ X̄`[0, r,β

∗
` ] − Wi`(r),∀` ∈ Iold, ` 6= i

}
,

where

Wi`(r) = max

{
0,

h2τ 2
i`

2δr
− λ

}
.

Stopping Rule: If |I| = 1, then stop and select the system whose index is in I as the best.

Otherwise, take one additional observation (Xi,r+1,Ci,r+1) from each system i ∈ I, set

r = r + 1 and go to Screening.

The PCS guarantee is due to Kim and Nelson (2006).

References
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