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Industrial Strength COMPASS (ISC) is a particular implementation of a general framework for
optimizing the expected value of a performance measure of a stochastic simulation with respect
to integer-ordered decision variables in a finite (but typically large) feasible region defined by
linear-integer constraints. The framework consists of a global-search phase, followed by a local-
search phase, and ending with a “clean-up” (selection of the best) phase. Each phase provides a
probability 1 convergence guarantee as the simulation effort increases without bound: Convergence
to a globally optimal solution in the global-search phase; convergence to a locally optimal solution
in the local-search phase; and convergence to the best of a small number of good solutions in the
clean-up phase. In practice, ISC stops short of such convergence by applying an improvement-based
transition rule from the global phase to the local phase; a statistical test of convergence from the
local phase to the clean-up phase; and a ranking-and-selection procedure to terminate the clean-up
phase. Small-sample validity of the statistical test and ranking-and-selection procedure is proven
for normally distributed data. ISC is compared to the commercial optimization via simulation
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1. INTRODUCTION

The popularity of stochastic simulation for system design and analysis has been
driven by a sequence of key advances: Implementation of intuitive process-
interaction (network) modeling paradigms; the development of graphical
user interfaces for model development; convenient animation of simulation re-
sults; interapplication communication between simulation and other software;
and integrated toolkits for optimization of simulated system performance (see
Nance and Sargent [2002] for a more comprehensive overview of the evolution
of discrete-event, stochastic simulation). Only this last advance, which we call
Optimization via Simulation (OvS), is an analysis capability (analysis methods
have certainly been incorporated into simulation software, but are probably not
responsible for its popularity). Although not every simulation problem requires
optimization, it is rare to find an application where the analyst is uninterested
in “the best” settings for the simulated system, and in many cases finding a
good system design is the reason the simulation was constructed.

As noted by a number of authors (e.g., Fu [2002]), there has been a dis-
connect between research on OvS and the practice of OvS, as represented by
the commercial OvS products. Simply stated, the impact of published research
on commercial software has been limited. Nevertheless, commercial OvS soft-
ware has been successful because (a) there was and is a substantial market
for actually doing OvS in practice, (b) the products are able to handle realistic
problems with complex objectives and constraints, while delivering results in a
timely manner, and (c) they are integrated into simulation modeling software.
The research community, on the other hand, has focused on OvS correctness,
as quantified by convergence or “correct selection” guarantees. These proper-
ties are easiest to prove (which is not to say easy to prove) for simple, elegant
algorithms that leave a host of implementation issues unresolved (e.g., com-
plex constraints and stopping rules). Correctness, in this formal sense, is not a
feature of commercial products. Correctness matters, however, because when
stochastic noise is present an inferior solution may be selected, and its actual
performance may be poorly estimated, in the absence of correctness guarantees.

In the last decade there has been significant research activity aimed at bridg-
ing this divide, and we believe it has reached a level of maturity that supports
a first step toward developing OvS software that offers correctness guaran-
tees while also being competitive with the features provided by commercial
products. This article reports one such step, which we call Industrial Strength
COMPASS (ISC). The name is derived from the Convergent Optimization via
Most Promising Area Stochastic Search algorithm of Hong and Nelson [2006],
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which is the core of ISC. ISC is a specific instance of a high-level framework
for OvS algorithms that consists of three phases: global, local, and clean-up.
Section 3 defines the properties that we desire for each phase. While we are
guilty of drawing heavily on our own research in turning this framework into a
specific algorithm, our approach is also strongly influenced by the foundational
work of Andradóttir [1995, 1999].

How can we establish that we are “competitive with the features provided
by commercial products?” We will do so by comparing ISC to OptQuest (OptTek
Systems, Inc.). If OptQuest is not the best of the commercial products, it is cer-
tainly a good representative of them and it is very widely used (it is integrated
into 13 simulation products according to www.opttek.com/simulation.html).
OptQuest implements robust metaheuristics; refer to the product Web site for
more details. Because OptTek Systems, Inc., provided a stand-alone version of
the OptQuest engine, our comparisons are not tied to a particular simulation
modeling product.

We use OptQuest to establish a competitive benchmark for optimization per-
formance as a function of simulation effort, and we count on OptQuest to deliver
good solutions quickly (which in our experience it does). We do not expect to beat
OptQuest in any comprehensive sense. OptQuest has had years of development,
and its algorithms are smart and efficient. We consider ISC to be a success if it
can deliver as good or better solution quality as OptQuest without expending
substantially more simulation effort. This constitutes “success” because ISC
provides convergence guarantees and inference that OptQuest does not. Our
only potential advantage comes from how we deal with the stochastic aspect
of the problem, which is fundamentally different from any of the commercial
products.

Since ISC is a first step, it has limitations, described shortly.

Objective. Our objective is to maximize or minimize the expected value of
a simulation output random variable whose distribution depends on a finite-
dimensional vector of controllable decision variables. This is also the implicit
objective in OptQuest. ISC does not support multiple objectives.

Decision Variables. We only consider integer-ordered decision variables.
Continuous-valued decision variables can be handled by discretizing them, but
ISC does not exploit the fact that they are continuous valued nor is discretiz-
ing likely to be very efficient. Categorical decision variables are not considered
at all, but if there are only a small number of categories then ISC can be run
separately for each category. This is more limited than OptQuest.

Constraints. We only consider deterministic constraints, specifically linear-
integer inequality constraints. The methodology employed in ISC works for
any convex feasible region, but we have only implemented the methods for
linear-integer inequality constraints. OptQuest can also include a useful form
of stochastic constraint.

Problem Size. While there is no conceptual limit to the problem size that
ISC can tackle, its performance will be affected more by the number of decision
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variables than by the number of feasible solutions that they imply. This is due
to the way we define a locally optimal solution as being better than all of its 2d
immediate neighboring solutions, where d is the number of decision variables
(see Section 3). Therefore, to declare a solution “optimal” at least 2d+1 solutions
must be simulated extensively. OptQuest is less restrictive on problem size but
can provide no guarantee of optimality without simulating all feasible solutions.

We will show that ISC achieves our goals: In some cases (noisy problem, mul-
timodal response surface) demonstrating superior performance to OptQuest; in
others (low noise, more regular response surface) being beaten by OptQuest in
terms of relative effort expended; and in yet others having performance almost
indistinguishable from OptQuest. Comparison of COMPASS-based approaches
with other convergent algorithms can be found in Hong and Nelson [2006]. The
ISC software and all supporting papers may be found at www.ISCompass.net.

In the next section we give a more precise statement of the OvS problem, re-
view relevant literature, precisely state our objectives, and set up the remainder
of the article.

2. BACKGROUND

We are interested in solving the following problem.

Minimize g (x) = E[G(x)] subject to x ∈ � = � ∩ Zd , (1)

where x is a vector of d integer-ordered decision variables in a feasible re-
gion � ⊂ �d , possibly defined by a set of constraints and Zd denotes all
d -dimensional vectors with integer components. We assume that � is compact
and convex so that |�| < ∞ (but probably quite large). The random variable
G(x) typically has no closed form, but can be observed through simulation ex-
periments at x. We assume that Var[G(x)] < ∞ for all x ∈ �, and that we can
simulate independent and identically distributed replications, G1(x), G2(x), . . .

at any x. Problem (1) is called a Discrete Optimization-via-Simulation (DOvS)
problem, and we refer to any x as a potential “feasible solution.”

DOvS problems arise in many areas of operations research and manage-
ment science. For instance, the following problems can all be modeled as DOvS
problems: capacity planning, where the capacities of all workstations need to
be determined; call center staffing, where the agents are allocated to different
departments and different time periods; and supply-chain management, where
inventory order-up-to levels are critical decisions. For reviews of the theory and
practice of optimization via simulation, see Fu [2002] and Fu et al. [2005].

A number of methods have been proposed in the research literature to solve
DOvS problems, including Globally Convergent Random Search (GCRS) algo-
rithms, Locally Convergent Random Search (LCRS) algorithms, Ranking and
Selection (R&S), and Ordinal Optimization (OO). GCRS algorithms converge
to the set of global optimal solutions as the simulation effort goes to infinity.
They typically achieve global convergence by making sure that all feasible so-
lutions are simulated infinitely often. GCRS algorithms include the stochastic
ruler algorithm of Yan and Mukai [1992], the simulated annealing algorithm of
Alrefaei and Andradóttir [1999], the stochastic comparison algorithm of Gong
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et al. [1999], and the nested partitions algorithm of Shi and Ólafsson [2000]
and Pichitlamken and Nelson [2003].

LCRS algorithms include the COMPASS algorithm [Hong and Nelson 2006]
and the revised COMPASS algorithm [Hong and Nelson 2007a] that converge
to a locally optimal solution as the simulation effort goes to infinity. Hong and
Nelson [2007a] show that local convergence can be achieved by simulating
only a locally optimal solution and its neighbors infinitely often. Compared
with GCRS, LCRS algorithms generally converge much faster in practice, but
they can be trapped in inferior solutions if there exist multiple locally optimal
solutions.

R&S procedures select the best solution by simulating all of them and mak-
ing statistical inference in the form of a Probability of Correct Selection (PCS).
They include the indifference-zone procedures (e.g., Nelson et al. [2001]), the
Bayesian procedures (e.g., Chick and Inoue [2001]), and the Optimal Comput-
ing Budget Allocation procedures (OCBA, e.g., Chen et al. [2000]). When the
set of feasible solutions of problem (1) is small, R&S procedures can be directly
applied to find the best solution. When the set is large, special R&S proce-
dures have been developed to facilitate the optimization process (e.g., Hong and
Nelson [2007b]) and to “clean up” after the optimization process [Boesel et al.
2003b].

OO softens the goal of finding an optimal solution to finding a top-n solution
[Ho et al. 1992]; it becomes a DOvS algorithm by first picking (often by blind
picking) a set of k solutions and then finding the best among the k solutions,
often by using OCBA. The critical issue is to determine k, which OO does by
achieving a certain level of the “alignment probability,” which is the probability
that at least one of the k solutions is a top-n solution.

The algorithms proposed in the research community typically have good con-
vergence or statistical properties. However, they are often too simple or ineffi-
cient to solve practical problems. Therefore, they are seldom used in practice.
On the other hand, all of the major commercial simulation modeling products
have simulation optimization toolkits that use sophisticated metaheuristics de-
signed for challenging deterministic optimization problems, but that often take
a simplistic approach to handling the noise of stochastic problems. Therefore,
the algorithms work well when the level of noise in the simulation output is
low, but they can be significantly misled when it is not.

In this article, we modify several existing algorithms in the research litera-
ture and combine them together under a carefully designed algorithm frame-
work. We show that the resulting new algorithm, called ISC, has nice conver-
gence and statistical properties and also has competitive performance compared
to the commercial package OptQuest. The algorithm framework includes three
phases: global, local, and clean-up. The global phase explores the whole feasible
region and identifies several good solution seeds; the local phase takes one seed
at a time and finds a locally optimal solution; and the clean-up phase selects the
best from the set of solutions identified in the local phase and also estimates
its expected performance.

ISC is obtained by making specific choices for each phase. For the global
phase, we adapt a Niching Genetic Algorithm (NGA) [Miller and Shaw 1995;
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Sareni and Krahenbuhl 1998] that can quickly identify several clusters of good
solutions. We show that our version of the NGA can be made to converge to a
globally optimal solution as the simulation effort goes to infinity. For the local
phase, we use a modified version of the COMPASS algorithm that converges to
a locally optimal solution. A stopping test is used to terminate the COMPASS
algorithm when a locally optimal solution is identified with probability at least
1 − αL. Therefore, as 1 − αL → 1, the COMPASS algorithm can be shown to
converge with probability 1 to a locally optimal solution. For the clean-up phase,
we apply a R&S procedure to select the best of the solutions identified in the
local phase with probability greater than or equal to 1 − αC, and also provide a
fixed-width ±δC confidence interval for the expected value of the performance of
the selected solution. As 1−αC → 1 the best of these solutions will be identified
with probability 1. Throughout the article we use the subscripts G, L, and C
to denote parameters associated with the global, local, and clean-up phases,
respectively.

An alterative framework that has been proposed is the Balanced Explo-
rative and Exploitative Search with Estimation scheme (BEESE) [Prudius and
Andradóttir 2004, 2009]. BEESE integrates the global search, local search, and
estimation together, and it converges to a globally optimal solution as the sim-
ulation effort goes to infinity. A framework with similar objectives is also pro-
posed by Lin and Lee [2006]. Compared to these frameworks, our framework
is designed to find good locally optimal solutions, and stop with a statistical
guarantee that we have done so, without the need to simulate all feasible solu-
tions. However, our approach requires transitions between phases which these
frameworks avoid.

The remainder of the article is organized as follows: In Section 3 we introduce
the three-phase framework and discuss how to transition between phases. A
high-level description of the ISC algorithm is presented in Section 4 along with
its convergence and statistical properties. In Section 5 we evaluate the perfor-
mance of ISC through a number of examples and compare it to OptQuest. The
article is concluded in Section 6. Proofs and the details of the ISC algorithm are
provided in the appendices, some of which are electronic (online-only, accessible
in the ACM Digital Library).

3. DOVS FRAMEWORK

Our DOvS framework has three phases: global, local, and clean-up. In this
section, we discuss the desired properties of each phase.

In the global phase we want to quickly identify a number of solution seeds
that may lead to competitive locally optimal solutions in the second phase, and
also facilitate a quick start for the local search of the second phase. To ensure
that the algorithm used in this phase has good large-sample properties, we
require it to be globally convergent if the simulation effort of this phase goes to
infinity.

Although the algorithm of the first phase should be globally convergent, it
will transition to the second phase in practice. The transition rules can be effort
based or quality based. An effort-based rule transitions from the first phase to
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the second phase after the simulation budget for the first phase is consumed;
a quality-based rule transitions if it is clear that the seeds can lead to high-
quality solutions in the second phase. Effort-based rules are often arbitrary
and therefore to be avoided; but they are sometimes necessary because it is
difficult to predict in advance how long it might take a particularly difficult
problem to transition based on quality rules. The detailed transition rules used
in ISC are introduced in the next section.

The local phase starts with the best solution seed identified in the first phase
and uses efficient local search to find a locally optimal solution; it then goes on
to the second-best solution seed and so on, until exhausting all solution seeds.
To ensure good performance of the algorithm used in this phase, we require it
to be locally convergent as the simulation effort goes to infinity, regardless of
the quality of the seeds that are provided. We define a local minimum as follows
(this definition is also used in Hong and Nelson [2006, 2007a]).

Definition. Let N (x) = {
y : y ∈ � and ‖x − y‖ = 1

}
be the local neighborhood

of x ∈ �, where ‖x−y‖ denotes the Euclidean distance between x and y. Then x
is a local minimum if x ∈ � and either N (x) = ∅ or g (x) ≤ g (y) for all y ∈ N (x).
Let M denote the set of local minimizers of the function g in �.

Since the quality of the solutions found in the local phase is critical to the
performance of the algorithm, in practice we require each solution obtained in
this phase to be a local minimum with probability at least 1 −αL. Therefore, as
the PCS 1 − αL → 1, the effort goes to infinity and the algorithm is guaranteed
to be locally convergent.

The transition between the second and third phases can be either effort
based or quality based. For the effort-based rule, transition happens when the
simulation budget for the second phase is exhausted. If there is no effort limit,
the algorithm transitions once all solutions seeds are searched, which is what
we prefer. The local phase returns a set of solutions L, and is designed to give
high confidence that L ⊂ M.

In the clean-up phase we want to select the best solution from among the
locally optimal solutionsL found in the second phase, and the actual value of the
selected solution also needs to be estimated to within ±δC, all with confidence
level ≥ 1 − αC, where δC > 0 and 0 < αC < 1 are set by the user. As 1 − αC → 1
the best solution is therefore selected with probability 1.

4. METHODOLOGY

Our goal is to produce a DOvS algorithm that satisfies the requirements set
by Andradóttir and Nelson [2004]: Provable asymptotic performance, compet-
itive finite-time performance, and valid statistical inference at termination.
We achieve this by using the framework in Section 3. To a certain extent, we
exploit existing technologies to fill in each phase. However, the requirement
that we achieve “competitive finite-time performance” requires us to invent a
number of enhancements that improve performance without affecting conver-
gence guarantees. These enhancements range from essential speedups to minor
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Fig. 1. Industrial Strength COMPASS implementation of the optimization framework.

tweaks, and from rigorously justified to “makes sense and seems to work well in
experiments.” In this section we provide a high-level review of the existing tech-
nologies we incorporate and the details of only the most critical enhancements.
In the electronic appendix we fully document the entire algorithm; Figure 1 is
an overview of the approach.

A few basic terms and concepts are critical to an understanding of ISC:

—To “sample a solution” means to select a solution randomly, either from �

or a designated subregion of it. The methods we use to sample solutions
guarantee that all solutions in the region of interest have a (nearly) uniform
probability of being selected.

—To “evaluate a solution” means to obtain one or more independent replications
of its performance and to average these results. The set of “visited solutions”
are those that have been evaluated at least once. We always accumulate
performance data on visited solutions, so that if a solution is evaluated more
than once its performance is estimated by the cumulative sample mean of all
replications.

—Convergence guarantees are always as the simulation effort goes to infin-
ity. To keep the effort from going to infinity in ISC, we use transition rules
in the global phase, and statistical tests in the local and clean-up phases.
The small-sample validity of these tests depends on the simulation output
data being normally distributed, or on the sample size being large enough
that Central Limit Theorem considerations make normality a good approxi-
mation for the cumulative average. The nature of the COMPASS algorithm,
which concentrates effort on apparently locally optimal solutions and their
neighbors, tends to generate enough replications of the tested solutions that
approximate normality can be anticipated. The convergence guarantees of
the local and clean-up phases do not depend on the small-sample validity of
these tests, however.
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4.1 Global Phase

The role of the NGA is to serve as our global search engine, and we have ex-
tended the basic NGA technology to make it globally convergent (if desired) for
the class of DOvS problems considered here (see the Appendix). As noted in
Section 2, there are already globally convergent DOvS algorithms, so why do
we need another? In practice, we will transition from global to local phases long
before achieving anything like global convergence, and the local phase will then
pursue promising subregions more intensely. Therefore, we need an algorithm
that can achieve global convergence, in a limiting sense, but does so by simul-
taneously identifying and investigating one or more promising subregions of �

that will be seeds for the locally convergent second phase. COMPASS, which
we use for the local phase, converges particularly quickly given a good starting
solution and a cluster of solutions around it. The NGA, which is designed for
multimodal functions, accomplishes this.

We chose genetic-algorithm technology because it is a population-based, as
opposed to a point-to-point, search that considers many good solutions in par-
allel and therefore tends to be somewhat robust to stochastic noise [Jin and
Branke 2005]. That GAs converge slowly is not an issue since we depend on the
rapid convergence of COMPASS to close in on locally optimal solutions. What is
far more important is that we explore the feasible region broadly and identify
collections of solutions in promising subregions.

4.1.1 Niching GA. GAs, by their nature, are complicated algorithms to de-
scribe. Here we present a high-level overview of our version of a NGA; complete
details for each step described shortly may be found in the electronic appendix.
When we stop the NGA, based on a transition rule, it delivers one or more “niche
centers” (good solutions or seeds) and a cluster of other near-by solutions, as
defined by a “niche radius;” see Figure 1. The local phase attacks each niche in
turn looking for a locally optimal solution.

Niching GA.

Initialization. Randomly sample mG solutions x1, x2, . . . , xmG from � and
evaluate them.

Evolution. Execute a generation of the NGA to evolve the current popula-
tion of mG solutions into a new population of mG solutions, maintaining a niche
structure around apparently good solutions:

(1) Form niches: Form up to q niches by clustering solutions within radius r
of good solutions.

(2) Selection: Select mG/2 solutions randomly, but with replacement, from
the population using a linear ranking scheme that gives preference to solutions
with better estimated performance (we use the approach described in Boesel
[1999] and Boesel et al. [2003a]).

(3) Mating: For each solution selected in Step 2, use a mating restriction
scheme to select its partner.

(4) Crossover: Randomly create a new pair of solutions that are geometrically
between each pair of solutions.
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(5) Mutation: Randomly perturb the coordinates xi1, xi2, . . . , xid of each new
solution xi.

Evaluate Solutions. Evaluate all solutions in the current population.

Next Generation. Replace solutions in the population with newly generated
solutions.

Go to Evolution.
Key input parameters for the NGA are the number of niches to form, q,

and the niche radius, r, which defines how close a solution must be to a niche
center (good solution) to be clustered in the same niche. Because our algorithm
is intended to be general purpose, we have no way to know these values in
advance, nor should we expect the user to be able to provide them. To solve
this problem, we enhance the Initialization and Evolution steps so that on each
iteration of the NGA we form a rough response surface model over � from which
we extract estimates of q and r; therefore, q and r will change from iteration
to iteration of the NGA. The modified steps are as follows.

Enhanced Initialization. Estimate the number of regions containing local
minimums, q, and half the shortest distance between any of these two local
minimums, r, which will then serve as the number of niches and the niche
radius, respectively, for the NGA.

(1) Randomly sample mG solutions x1, x2, . . . , xmG from �. The value of mG
is set as at least 50, since this guarantees that, with a probability greater than
90%, at least one of the mG solutions are among the best 5% of all solutions
in � based on calculation of the alignment probability in ordinal optimization
(see, for instance, Ho et al. [1992]).

(2) Evaluate each solution by obtaining n0 replications and averaging.
(3) For each x ∈ �, let its value be the sample average of the closest visited

solution to it; this defines a piecewise constant response surface over �. On this
response surface, let q be the number of local minimums (niche centers) and let
r be half the distance between the closest pair of local minimums.

Enhanced Evolution. Execute a generation of the NGA to evolve the current
population of mG solutions into a new population of mG solutions, maintaining
a niche structure:

(1) For each x ∈ �, let its value be the sample average of the closest visited
solution to it; this defines a piecewise constant response surface over �. On this
response surface, let q be the number of local minimums (niche centers) and let
r be half the distance between the closest pair of local minimums.

(2) Continue with the Evolution step as before....
Like most GAs, NGAs were designed for deterministic optimization prob-

lems. In our stochastic context, to “evaluate” a solution means to simulate it
and estimate its value. The second key enhancement relates to how we do this
so that we obtain a global convergence guarantee (this step, along with our
implementation of mutation, guarantee that all solutions will be simulated in-
finitely often if the NGA is never terminated, so that the sample averages will
converge to their true expectations with probability 1; see Appendix A).
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Evaluation of Solutions. For all solutions in the current population that
have been evaluated previously, generate �n additional replications and av-
erage. For all solutions in the population that have not yet been evaluated,
generate n0 replications and average.

4.1.2 Transition Rules. In practice, we terminate the global phase when
conditions indicate that we have uncovered fertile regions for seeking locally
optimal solutions. We believe that there are at least four categories of transition
rules, described next.

Budget rule. The user may specify a budget (in terms of number of repli-
cations) for the global phase so that a transition occurs when the budget is
exhausted if it has not already occurred.

Niche rule. If at any time there is only one niche, then transition to the local
phase.

Improvement rule. If there is no apparent improvement in solution quality
in TG generations, then transition to the local phase. The value of TG may be
user specified.

Dominance rule. If the solutions in one niche statistically dominate the
solutions in all other niches, then transition to the local phase.

Our implementation of ISC incorporates all of these rules, but in the empir-
ical evaluation we did not set a budget limit.

4.2 Local Phase

The role of the COMPASS algorithm is to start with a niche of solutions as input
and rapidly converge to a locally optimal solution. COMPASS is guaranteed to
do this as the number of iterations goes to infinity, even if the niche does not
surround a locally optimal solution [Hong and Nelson 2006]. However, the hope
is that the NGA has identified small subregions containing local optima so that
COMPASS can converge very quickly.

4.2.1 COMPASS. In the COMPASS algorithm, we use Vk to denote the
set of all solutions visited through iteration k of a COMPASS run, and use
x̂∗

k to denote the solution with the smallest aggregated sample mean among
all x ∈ Vk ; that is, x̂∗

k is the sample best solution through iteration k. When
COMPASS is run after the transition from the global phase, the set V0 contains
the solutions from the niche being explored.

At the end of iteration k, we construct

Ck = {x : x ∈ � and ‖x − x̂∗
k‖ ≤ ‖x − y‖, ∀y ∈ Vk and y �= x̂∗

k}
the most promising area at iteration k. The set Ck includes all feasible solutions
that are at least as close to x̂∗

k as to other solutions in Vk . At iteration k + 1,
COMPASS samples mL solutions (nearly) uniformly from Ck . Notice that Ck is
never empty since x̂∗

k is always in Ck , and we do not require the mL solutions to
be unique. As we show shortly, the most promising area is defined by a collection
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of linear constraints (including the original constraints that defined the feasible
region).

The COMPASS algorithm uses a Simulation-Allocation Rule (SAR) to evalu-
ate solutions in Vk at each iteration. The rules we employ, which are described
in the electronic appendix, allocate replications either based on a fixed schedule
or using OCBA ideas. Let ak(x) be the additional observations allocated to x at
iteration k as determined by the SAR; ak(x) may depend on all past informa-
tion such as Vk and Gi(x), i = 1, 2, . . . , for all x ∈ Vk . Then Nk(x) = ∑k

i=0 ai(x)
denotes the total number of observations on solution x at iteration k for every
x ∈ Vk . We use Ḡk(x) to denote the sample mean of all Nk(x) observations of
G(x) at iteration k. The basic COMPASS algorithm is as follows [Hong and
Nelson 2006].

Algorithm. COMPASS

Step 0. Set iteration counter k = 0 and form C0 based on the solutions in V0.

Step 1. Let k = k +1. Sample xk1, xk2, . . . , xkmL uniformly and independently from Ck−1.
Let Vk = Vk−1 ∪ {xk1, xk2, . . . , xkmL }. Determine ak(x) according to the SAR for every x
in Vk . For all x ∈ Vk , evaluate x by taking ak(x) observations and updating Nk(x) and
Ḡk(x).

Step 2. Let x̂∗
k = argminx∈Vk

Ḡk(x). Construct Ck and go to step 1.

The COMPASS algorithm converges to a locally optimal solution as k → ∞
under very mild conditions, essentially that each sample mean Ḡk(x) satisfies
a strong law of large numbers, the SAR guarantees that the number of repli-
cations allocated to all visited solutions goes to infinity, and � is finite [Hong
and Nelson 2006]. Stronger conditions allow COMPASS to converge when �

is countably infinite; see Hong and Nelson [2006] and also Andradóttir [2006].
Since ISC assumes that observations of a solution are obtained from indepen-
dent and identically distributed replications with finite variance, the first con-
dition is easily satisfied. However, as noted in Hong and Nelson [2007a], the
latter condition, that is, that the number of replications that all visited solu-
tions receive goes to infinity, is inefficient and much stronger than necessary.
In fact, only those solutions in Vk that are necessary to define Ck need to receive
additional replications on iteration k, and only solutions in the neighborhood of
the locally optimal solution identified by COMPASS need to receive an infinite
number of replications in the limit.

Our primary enhancement to COMPASS is solution pruning, which means
that at the end of iteration k we determine which solutions in Vk generate active
constraints for the most promising area; stated differently, we find the smallest
set of solutions that define Ck . Then only the solutions that define Ck , the current
sample best solution, and the newly sampled solutions xk1, xk2, . . . , xkmL are
evaluated according to the SAR. The trick is figuring out if x ∈ Vk is an active
solution, which is the enhancement we present here.

In COMPASS, each visited solution xi ∈ Vk that is not the current sample
best solution x̂∗

k defines a constraint plane that is halfway between xi and x̂∗
k .

The most promising area consists of the solutions closer to x̂∗
k than to xi; that
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is, on the x̂∗
k side of the planes. These constraints take the form

(̂
x∗

k − xi
)′

(
x − x̂∗

k + xi

2

)
≥ 0.

Removing redundant solutions is equivalent to finding all solutions that do not
define active constraints. We can decide if a solution xi ∈ Vk is redundant by
solving a Linear Program (LP) where we maximize the constraint of interest
subject to the other constraints (see, for instance, Telgen [1983]). Therefore, to
decide if solution xi is redundant we solve

minx
(̂
x∗

k − xi
)′

(
x − x̂∗

k + xi

2

)

s.t.
(̂
x∗

k − x j
)′

(
x − x̂∗

k + x j

2

)
≥ 0 ∀x j ∈ Vk , j �= i.

If the objective function is nonnegative, then the constraint is redundant and
the solution is not active. After doing it the first time we only need to apply
pruning to the currently active solutions and the newly sampled solutions, not
all visited solutions. Therefore, the number of active solutions in COMPASS can
be kept small by occasionally doing this pruning, and since solving small LPs
is fast, the overhead is more than offset by avoiding the need to apply the SAR
to an ever-increasing number of solutions. Further, it turns out that having a
small number of COMPASS constraints also speeds the random sampling of
new solutions from the most promising area.

A second, less-critical enhancement to COMPASS is to locate the constraint
plane based on how much improvement we predict in moving from xi to x̂∗

k
rather than always using half the distance. This modification keeps COMPASS
from closing in too quickly when the current sample best is not conclusively bet-
ter than the other active solutions, and is described in the electronic appendix.

4.2.2 Transition Rule. The evolution of the COMPASS algorithm guaran-
tees that eventually the most promising area is a single solution x̂∗, and that
only the solutions in its neighborhood N (̂x∗) will be active. At this point it is
reasonable to stop COMPASS and test if the single solution is superior to all of
its neighbors. We propose the following hypothesis test.

H0 : g (̂x∗) ≤ min
y∈N (̂x∗)

g (y) vs. H1 : g (̂x∗) > min
y∈N (̂x∗)

g (y)

We set the Type I error to αL and we want the power to be at least 1 − αL
if g (̂x∗) ≥ miny∈N (̂x∗) g (y) + δL, where δL is a tolerance that the user chooses
(that defaults to δC defined in the next section). If x̂∗ passes the test, then we
stop COMPASS and declare x̂∗ to be locally optimal; otherwise, the test gives a
solution in N (̂x∗) that is better than x̂∗, which enables COMPASS to continue.
Notice that, if we drive 1 − αL to 1, then this drives the sample size to infinity
and we are guaranteed to find a locally optimal solution.
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We can rewrite this test in the following form.

Pr{declare x̂∗ locally optimal} ≥ 1 − αL if g (̂x∗) ≤ min
y∈N (̂x∗)

g (y)

Pr{declare x̂∗ not locally optimal} ≥ 1 − αL if g (̂x∗) ≥ min
y∈N (̂x∗)

g (y) + δL

This test can be viewed as a special case of comparisons with a standard (see,
for instance, Nelson and Goldsman [2001] and Kim [2005]), with x̂∗ being the
standard. Therefore, we can use a highly efficient comparison-with-a-standard
procedure to carry out the test. In the ISC algorithm we use the sequential
procedure of Kim [2005]. This procedure takes one simulation observation at a
time from all solutions still in contention and determines if any of them can be
eliminated. It stops when only one solution remains and selects that solution.
The procedure typically needs fewer simulation observations to make the selec-
tion decision than a two-stage procedure, for instance, the procedures in Nelson
and Goldsman [2001]. Moreover, it can be shown to guarantee the Type-I error
and power requirement if the simulation observations are normally distributed.

If there is no budget limit in the local phase (and we did not impose one in
our empirical evaluation), then ISC transitions to the clean-up phase when all
niches identified in the global phase have been explored by COMPASS. There-
fore, the first two phases of the ISC algorithm attempt to ensure that the search
space is both fully explored and thoroughly searched.

4.3 Clean-Up Phase

When we transition to the clean-up phase, we have a set L of solutions that have
been declared, with high statistical confidence, to be locally optimal (L ⊂ M).
If |L| = 1, then we simply need to make sure we have estimated the value of
this solution with sufficiently high precision; if |L| > 1 then we want to select
the best of these local optima, and estimate its value with sufficiently high
precision.

We measure “precision” by a user-specified parameter δC > 0, which indi-
cates that we want confidence ≥ 1 − αC that we have identified the best in L
when its true mean is at least δC better than all of the others. The user should
set δC to the smallest difference that it is worth detecting relative to the deci-
sion that the simulation model is required to support. The smaller δC is, the
more simulation effort (replications) that will be required to deliver the correct-
selection guarantee. We also want to estimate the value of the selected solution
to within ±δC with high confidence. If we drive 1 − αC → 1 then this drives the
sample size to infinity and we guarantee to both select the best and estimate
its value perfectly. To accomplish this we invoke the “clean up” technology of
Boesel et al. [2003b] to select the best, and enhance their procedure with a ±δC
confidence interval on the value of the selected solution. Here we present a
high-level overview of the clean-up phase.

Clean Up.

Screening. Using whatever data are already available on the solutions in
L, discard any solutions that can be shown to be statistically inferior to one or
more of the others. Let LC be the surviving solutions.
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Selection. Acquire enough additional replications on the solutions in LC to
select the best with the desired guarantees. Let xB be the selected solution.

Estimation. With confidence level ≥ 1 − αC, xB is the best, or within δC of
the best, of the solutions in L and g (xB) ∈ Ḡ(xB) ± δC.

A proof of the validity of the confidence interval for normally distributed data
is in Appendix B.

5. EVALUATION

The “no free lunch theorems” of Wolpert and Macready [1997] imply that we
cannot expect any optimization algorithm to dominate all others, and they sup-
port the intuitive notion that, with essentially no restriction on the function
g (x) and the noisiness of G(x), we can always invent a problem to make any
approach look bad. This fact is a strong argument in favor of correctness guar-
antees, because even in a problem designed to make, say, ISC perform poorly,
we nevertheless have a guarantee to get a locally optimal solution eventu-
ally. In any event, no statements about either ISC or OptQuest that apply
to all possible problems can be made based on the five test cases we present
here.

To evaluate the performance of ISC we have selected both known response-
surface functions to which we add noise, and realistic DOvS problems that
have a physical interpretation. The response-surface functions were chosen to
facilitate control of the surface, noise properties, and problem dimension to
see how they affect ISC. The realistic problems were selected to provide some
sense of how ISC can be expected to perform in practice. The problems were
not selected to be particularly difficult for OptQuest, and in fact for one of the
response-surface functions OptQuest is significantly better than ISC, using our
performance metrics.

We made three important decisions about how ISC would be evaluated with
respect to OptQuest.

(1) For each DOvS problem considered, we make multiple, independent tri-
als of each optimization algorithm. For ISC, this means that both the random
sampling that is internal to ISC, and the simulation outputs themselves, are
independent from trial to trial. For OptQuest, only the simulation outputs are
independent from trial to trial since we have no control over what, if any, ran-
domness is internal to OptQuest.

(2) We focus on average performance over the trials as a function of the
simulation effort (although we also look at the quality of the final solution from
individual runs). This raises two issues:

(a) We measure “effort” only in terms of the simulation effort, and specifically
the number of replications consumed. In doing so, we are assuming that (i) the
effort per replication is roughly the same at all solutions x ∈ �, which is rea-
sonable for our test problems, and (ii) that the optimization overhead for both
ISC and OptQuest is small relative to the cost of running simulations. Assump-
tion (ii) is not strictly true. For our response-surface functions the simulations
are essentially instantaneous, so algorithm overhead is probably relatively
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significant. And even though OptQuest is a finely tuned algorithm that typ-
ically seemed to impose little overhead, on our flowline design and inventory
management test problems it did execute substantially slower than ISC while
on the high-dimensional response-surface problem it was significantly faster.
Solving the LPs to do solution pruning and randomly sampling the most promis-
ing area in the local phase comprise the primary overhead in ISC, and both can
be slow but could be made faster with continued development.

(b) We judged performance, when possible, using the true expected value of
the solution that each algorithm currently thinks is the best, rather than by its
estimated value. Of course, this is impossible to do in real problems for which
g (x) is not known, but it is the appropriate metric for an evaluation since g (̂x∗)
will be the long-run performance we get from the selected solution, not Ḡ (̂x∗).

(3) We first ran trials of ISC, because ISC has the advantage of knowing when
to stop. OptQuest can stop in two ways: either the computation budget is ex-
hausted or no improvement in the estimated objective value is obtained within
a certain number of iterations. To make sure that we did not stop OptQuest pre-
maturely, we gave it a budget substantially larger than the maximum number
of replications any ISC trial used for the first three and the fifth test problems,
and the average number of replications ISC used for the fourth test problem.
We did not have OptQuest stop based on lack of improvement.

5.1 Test Problems

The first test problem is a modification of the multimodal function F2 used in
Miller and Shaw [1995]. We rescale F2, change its sign (since it represents a
maximization problem), and then add up two copies of it and call the resulting
function g1(x1, x2).

F2(x) = sin6(0.05πx)

22( x−10
80 )2

, 0 ≤ x ≤ 100

g1(x1, x2) = −[F2(x1) + F2(x2)], 0 ≤ x1, x2 ≤ 100 (2)

The function F2 has 5 local optima with a global optimum at x = 10. The
magnitudes of the local optima decrease exponentially: F2(10) = 1, F2(30) =
0.917, F2(50) = 0.7071, F2(70) = 0.4585 and F2(90) = 0.25. Since there is no
interaction between the two variables, g1 has 25 local optima and a global opti-
mum at (10, 10) with objective value −2 (see Figure 2). This function represents
a response surface with many, widely spaced local optima.

Normally distributed noise with zero mean and standard deviation of 0.3 was
added to g1 to make it a DOvS problem. Considering the difference between
the global minimum (−2) and the second best solution (−1.917), the noise is
quite significant. The feasible solution space is 0 ≤ x1 ≤ 100, 0 ≤ x2 ≤ 100 and
x1, x2 ∈ Z+.

The second test problem is the singular function of Hong [2004]. To facilitate
the use of a log scale in our performance plots, we add one to the original
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Fig. 2. Test function g1 (0 ≤ x1, x2 ≤ 100).

singular function so now it is

g2(x1, x2, x3, x4) = (x1 + 10x2)2 + 5(x3 − x4)2 + (x2 − 2x3)4 + 10(x1 − x4)4 + 1.

(3)

When only integer solutions are considered, this function has three local min-
ima: (0, 0, 0, 0) with g2(0, 0, 0, 0) = 1; (1, 0, 0, 1) with g2(1, 0, 0, 1) = 7; and
(−1, 0, 0, −1) with g2(−1, 0, 0, −1) = 7. This test problem represents a response
surface with a small number of tightly clustered local optima.

We consider two versions of the stochastic noise for this surface: (a) normally
distributed noise with zero mean and standard deviation

√
g2(x1, x2, x3, x4)

(noise decreases as we approach the global optimum) and (b) normally dis-
tributed noise with zero mean and standard deviation 30 (substantial noise
near the global optimum). The feasible solution space is −100 ≤ xi ≤ 100, xi ∈
Z+, i = 1, 2, . . . , 4.

The third test problem is a three-stage flowline with finite buffer storage
space in front of stations 2 and 3 (denoted by x4 and x5) and an infinite number
of jobs in front of station 1 (see Buzacott and Shantikumar [1993] and Pichit-
lamken and Nelson [2003]). There is a single server at each station, and the ser-
vice time at station i is exponentially distributed with service rate xi, i = 1, 2, 3.
If the buffer of station i is full, then station i − 1 is blocked and a finished
job cannot be released from station i − 1. The total buffer space and the ser-
vice rates are limited. The objective is to find a buffer allocation and service
rates such that the steady-state throughput is maximized. The constraints are
x1 + x2 + x3 ≤ 20, x4 + x5 = 20, 1 ≤ xi ≤ 20 and xi ∈ Z+ for i = 1, 2, . . . , 5. This
gives 21, 660 feasible solutions. The local optima happen to also be global op-
tima: (6, 7, 7, 12, 8) and (7, 7, 6, 8, 12) with steady-state throughput 5.776. The
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average throughput from time 50 to time 1000 constitutes a replication. This
test problem represents a realistic DOvS problem where we actually know the
answer.

The fourth test problem is an inventory management problem with dynamic
consumer substitution. The model that we optimize is adapted from Mahajan
and Van Ryzin [2001] and it represents a difficult research problem for which
the optimal solutions are not known.

The model considers a one-shot inventory stocking decision faced by a retailer
for v product variants at the beginning of a season; no inventory replenishment
happens in the model, and there is no salvage value for the products. It is
assumed that each individual consumer chooses an available product with the
highest utility, which may be a no-purchase option. Pricing is assumed to be an
exogenous decision. Variant j ’s unit price is given as pj and the unit cost is c j .

The number of customers is Poisson with mean 1000, and the customer’s
choice behavior is modeled by the widely used multinomial logit model (MNL).
Briefly, variant j ’s utility to customer t is Ut j = aj − pj + ξt j , j = 1, 2, . . . , v,
where aj is variant j ’s quality factor, and ξt j is a random variable having an
extreme value (Type I) distribution. See Mahajan and Van Ryzin [2001] for
complete details.

In Mahajan and Van Ryzin [2001], a continuous relaxation of the problem
was numerically solved via a sample path algorithm, which is essentially a
continuous-variable OvS method. Although the continuous version of this prob-
lem is of some practical interest for commodities like gasoline, it is not appro-
priate for some situations. We apply ISC and OptQuest to the original integer-
ordered problem. There are six products and one no-purchase option.

The original problem was unconstrained. However, since demands are not
infinite, there exist reasonable upper bounds that we may impose on decision
variables without worrying about cutting out globally optimal solutions. In the
numerical experiment we ran, which is based on Mahajan and Van Ryzin [2001,
Example 1], there are 6 integer variables, each ranging from 0 to 500. Therefore,
the size of the feasible solution space is 5006 ≈ 1.6 × 1016 solutions.

The fifth test problem was designed to illustrate the impact of dimension.
Let

g5(x1, x2, . . . , xd ) = −β exp

{
−γ

d∑
j=1

j (x j − ξ�)2

}
,

where we set γ = 0.001, β = 10000, and ξ� = 0. This gives a surface shaped like
an inverted multivariate normal density function with a single globally optimal
solution at x = (ξ�, ξ�, . . . , ξ�) having value −10,000. The feasible region is the
hyperbox defined by

x j ∈
{
−m1/d

2
,

m1/d

2

}
for j = 1, 2, . . . , d with m = 1020, where we round the bounds to the nearest
integer if necessary. Defining the feasible region in this way keeps the number
of feasible solutions (nearly) the same as dimension changes, allowing us to
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isolate the impact of dimension from that of number of feasible solutions. To
make the problem stochastic we added normally distributed noise with stan-
dard deviation 0.3 × |g5(x)| so that noise increases near the optimal solution.

5.2 Tuning the DOvS Algorithms

Both OptQuest and ISC have options or settings that can enhance or degrade
their performance for any particular problem. While developing ISC we tried
to identify good general-purpose choices. Those that seemed to have the most
impact are as follows.

—In the global phase, the key settings are related to the transition rules. We
found that a good choice for the number of NGA generations without an
improvement to trigger a transition from global to local phases was TG = 3
generations, and we used that in all experiments reported here. We also found
that the dominant niche rule, which triggers a transition if there appears
to be only a single niche, could have a substantial impact on performance.
Therefore, we report results both with and without this rule.

—In the local phase, we found that an adaptive SAR (based on OCBA ideas;
see the electronic appendix) typically worked better than a fixed incremental
allocation rule for dimension d ≤ 10, so for the first four test problems we use
the adaptive rule. We also tested a modification of COMPASS that invokes a
sequential statistical test whenever the data indicate that COMPASS should
backtrack from the current most promising area to a surrounding area. This
test attempts to prevent COMPASS from incorrectly terminating progress
toward a locally optimal solution, but it does so at the cost of substantial
additional sampling to control the power of the test. We report results without
the backtracking test since it did not appear to be helpful.

Note that none of these settings affects the asymptotic convergence guaran-
tees offered by ISC, and we did not tune the parameters for the test problems
reported here.

For OptQuest, the most critical setting is how it allocates replications to
solutions. In all experiments reported here we used both the default setting
and the adaptive allocation option: The default setting allocates 3 replications
per solution and no more. The adaptive setting allocates at least 3, but no
more than 100 replications to each solution. OptQuest stops adding replications
within this range to a solution x when the length of a 95% confidence interval
for g (x) is less than 5% of the sample mean, or if the confidence interval for
g (x) does not overlap the 95% confidence interval for the current sample best
solution’s mean. For the inventory management problem we raised OptQuest’s
minimum number of replications from 3 to 20 for both the default and adaptive
settings because the problem was simply too noisy for OptQuest to make any
progress with 3 replications per solution.

After terminating its search, OptQuest includes an option to take the three
solutions with the sample best performance and apply a R&S procedure to
discover which of them is the true best, with high confidence. This R&S proce-
dure plays a different role than the clean-up phase of ISC, since it is not used
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Fig. 3. Performance plot for the multimodal function.

to terminate OptQuest, and the three solutions chosen for evaluation are not
necessarily expected to be locally optimal. For these reasons we do not report
results from using the R&S option of OptQuest.

5.3 Empirical Results

For the first two test problems the performance plot is the average for fifty trials
of the true expected value of the solution that each DOvS algorithm thinks
is the best solution found so far as a function of the number of replications
consumed. Recall that OptQuest is given a budget substantially larger than
the maximum number of replications consumed by any trial of ISC. In the
legends on the plots, “d” refers to ISC with the dominant niche transition rule
turned on, while “D” and “A” are versions of OptQuest with the default and
adaptive sample allocation rules, respectively.

A performance plot for the multimodal function is shown in Figure 3. Clearly
OptQuest with the default rule makes more rapid initial progress than ISC, but
then becomes trapped in inferior solutions. Notice also that since ISC is self-
stopping, and stops after different numbers of replications on each of the fifty
trials, fewer trial results are being averaged when moving from left to right
on the replications axis. This is why the performance of ISC can appear to get
worse or better near the end of the plot.

A performance plot for the singular function with large noise is shown in
Figure 4. Here OptQuest with the adaptive allocation rule is clearly superior,
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Fig. 4. Performance plot for the singular function.

while OptQuest with the default allocation rule is inferior, to ISC. In this prob-
lem ISC tends to terminate at or near one of the local optima, but not always the
global optimum. Recall that this problem had three locally optimal solutions
in close proximity that are likely not separated by the NGA. When noise that
decreases near the optimal solution is added, OptQuest’s performance is even
better.

A performance plot for the flowline design problem is shown in Figure 5.
Because this problem executed much more slowly, and the overhead for both ISC
and OptQuest was more substantial, the performance curves are the average of
25 and 10 trials for ISC and OptQuest, respectively. For this realistic problem
OptQuest makes faster initial progress, but both DOvS algorithms converge to
a global optimal solution, with ISC knowing when to stop.

While the flowline design problem is a relatively easy DOvS problem, the
inventory management problem is a particularly difficult one: The response is
quite noisy, and g (x) appears to be relatively flat near the good solutions (recall
that the true response surface is not known). To compare ISC and OptQuest,
we ran each for 10 trials, and at the end of each trial did further extensive
simulation of its chosen best solution to estimate g (̂x∗) very precisely. For this
problem, we only ran ISC without the dominant niche test, and OptQuest was
given a budget equal to the average number of replications that ISC used (ap-
proximately 100,000).
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Table I. Ten Trials of ISC and OptQuest on the Inventory Management Problem and
the Average Deviation of the Estimated Solution Value from “True”

ISC OptQuest: Default OptQuest: Adaptive
Trial Ḡ (̂x∗) “True” SE Ḡ (̂x∗) “True” SE Ḡ (̂x∗) “True” SE

1 1891 1874 1.6 1921 1858 1.5 1948 1874 1.5
2 1892 1873 1.6 1950 1875 1.6 1942 1868 1.6
3 1894 1870 1.4 1934 1870 1.6 1962 1877 1.7
4 1877 1871 1.7 1950 1873 1.6 1935 1871 1.4
5 1882 1869 1.4 1933 1859 1.3 1938 1859 1.6
6 1878 1860 1.7 1964 1852 1.8 1964 1869 1.5
7 1896 1876 1.6 1926 1861 1.4 1956 1872 1.5
8 1895 1876 1.5 1958 1872 1.6 1950 1863 1.7
9 1892 1878 1.5 1929 1855 1.7 1945 1867 1.6

10 1890 1876 1.4 1940 1867 1.6 1956 1866 1.6
Ave Dev 16 76 81

Table I shows the results. For each algorithm, the Ḡ (̂x∗) column shows the
estimated value of the sample best solution when the algorithm terminated,
while the column labeled “True” is an estimate of this solution’s true expected
value based on 10,000 replications (the standard error of this estimate is shown
in the SE column). While ISC found slightly better solutions (bigger is better
in this problem, and the average solution values for ISC, OptQuest (default
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allocation), and OptQuest (adaptive allocation) were 1872, 1864, and 1869,
respectively) of equal importance is that ISC’s estimate of the performance of
the chosen solution is much closer to its “True” value: Both ISC and OptQuest
tend to overestimate the true objective function value, as expected in a maxi-
mization problem, but ISC’s estimate is on average only 16 < δC = 20 greater,
as guaranteed by ISC (only one deviation was greater than 20, and that was 24).
This demonstrates the benefit of controlling the precision of the final estimate
in the clean-up phase.

Statistically guaranteed convergence becomes more and more difficult to
obtain as problems dimensionality d increases, and therefore the efficiency of
ISC is affected more by dimension than by the number of feasible solutions.
The fifth test problem illustrates this issue. Although we report results for a
specific test problem, some general lessons learned from looking at a number
of high-dimensional test problems are the following.

—The overhead for constraint pruning in the local (COMPASS) phase becomes
significant as dimension increases, although constraint pruning is still very
important. For dimension d ≥ 10 we recommend pruning less frequently
than the ISC default value of 5.

—As dimension increases it improves efficiency if the local (COMPASS) phase
defers adaptively allocating replications until an apparently locally optimal
solution is discovered, at which point the stopping test takes over sample
allocation. Therefore, we recommend turning off OCBA so that the sample
allocation scheme increases sampling just fast enough to guarantee conver-
gence when d ≥ 10.

—ISC is guaranteed to stop eventually. However, including a maximum budget
is important in high dimension since it is impossible to know in advance
how long it might take to stop and at present it is not possible to gracefully
interrupt ISC.

For ISC, we set δC = 10 ≈ β(1 − e−γ ), the performance gap between the optimal
solution and its neighbors, did constraint pruning only every 50 iterations,
turned off the OCBA adaptive sample allocation, and otherwise used default
ISC settings. OptQuest was run using its adaptive sample allocation setting.
We discovered that OptQuest always starts by evaluating the feasible solution
at the center of the feasible region, which means in our problem it starts with
the optimal solution. Therefore, for OptQuest we shifted the position of the
optimal solution a bit so that at least one iteration would be required to find it
by chance alone. We ran 5 macroreplications of each algorithm for dimensions
d = 5, 10, 15, and 20. We again ran ISC first, then gave OptQuest a budget
larger than the largest number of replications used by ISC. Here is what we
observed dimension by dimension.

d = 5. Both ISC and OptQuest quickly found the optimal solution.

d = 10. ISC found the optimal solution on all 5 trials, taking approxi-
mately 1 minute to do so and a maximum of 27,966 replications. OptQuest used
a budget of 30,000 replications in approximately 0.2 minutes (showing lower
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algorithm overhead than ISC). In 3 of 5 trials it found the optimal solution, and
in the other two trials it selected another good solution (within 1% of optimal).

d = 15. ISC’s algorithm overhead becomes substantial, taking approxi-
mately 20 times longer to exhaust a maximum of 172,348 replications than
the 180,000 budget given to OptQuest. ISC found the optimal in all 5 trials;
OptQuest found it in 2 trials and otherwise chose solutions within about 1% of
optimal.

d = 20. ISC spent about 30 times as long as OptQuest to exhaust a max-
imum of 359,054 replications; OptQuest was given a budget of 360,000. ISC
again found the optimal solution on each trial while OptQuest discovered it on
2 of them and otherwise chose solutions within 1% of optimal.

Some general statements about the results at all dimensions are that (a)
ISC’s terminal confidence interval on the value of the selected solution (which
was always the optimal solution) always contained its true expected value; (b)
OptQuest was distracted from the optimal solution when it visited an inferior
solution that got a particularly favorable sample, and as a result OptQuest’s
estimate of the value of its selected solution was better than its true value, often
by several times δC; and (c) OptQuest appeared to make good use of insight it
gained about the shape of the response surface (which is particularly nice in
this example), a feature that would help ISC.

Across these five cases, ISC demonstrated that it could be competitive with
OptQuest, despite enforcing finite-sample and limiting guarantees. This per-
formance encourages us to believe that provable guarantees and practical use-
fulness can be compatible. Of course, there will be problems on which a severe
price is paid to attain provable convergence, and robust metaheuristics that
“break the rules” will provide much better solutions. We believe that this will
most often be the case when the available time for optimization is tight or di-
mension is high so that rapid solution improvement is essential. Convergence
tends to slow progress.

6. CONCLUSIONS

We have presented Industrial Strength COMPASS, an algorithm and software
for DOvS that has provable asymptotic performance, competitive finite-time
performance, and valid statistical inference at termination. Our focus in this
article has been on using ISC in the same way that the commercial products
are typically used: with no information about the problem at hand other than
the definition of the objective function, decision variables, and constraints, and
a link to the simulation model. Only a single parameter, the error tolerance
on the estimate of the optimal solution δC, must be set by the user; all of the
other parameters have default values that we obtained during development of
ISC (the electronic appendix contains tables of all of the parameters and their
default values).

Like OptQuest, ISC has parameters that can be adjusted in ways that may
make it more effective on a particular problem. Of these tunable parameters,
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the most critical determine the aggressiveness of the global phase in allocating
replications to distinguish good solutions from bad, and how demanding the
local phase is before declaring a solution to be locally optimal. Our defaults
lean toward a relatively passive global phase that explores broadly and applies
little effort to each solution visited, and a relatively stringent test for local op-
timality in the local phase. These choices could waste time exploring the entire
surface too broadly when a little additional effort might uncover a friendly (e.g.,
unimodal) response surface quickly, or by repeatedly applying time-consuming
local optimality tests in an area with many close solutions. What we would like
to have are not better ways for the user to set these parameters, but rather
adaptive methods for tuning them during the optimization run as more and
more is learned about the particular DOvS problem at hand. This is a fruitful
area for future research.

Certain types of a priori information can be exploited by the user to make
ISC more effective, however:

(1) If the function g (x) is known or strongly suspected to be unimodal, then
convergence is likely to be more rapid if the global (NGA) phase is skipped,
going directly to the local (COMPASS) phase from an initial sample of solutions.
COMPASS alone converges very quickly for unimodal functions.

(2) If the simulation budget is tight and the goal is to find a pretty good
solution quickly, then the local (COMPASS) phase could be skipped, using an
effort-based transition rule to terminate the NGA, which explores the feasible
region broadly, then moving directly to the clean-up phase to obtain statistical
confidence in the selected solution. This is similar to the algorithm in Boesel
et al. [2003a].

(3) Known good starting solutions or a systematic experimental design can
be used to seed the NGA or COMPASS.

(4) For problems with dimension greater than 10, pruning constraints less
frequently and using the base (not OCBA) sample allocation rule is recom-
mended.

An overriding objective in the development of ISC was to have an algorithm
that could stop on its own with well-defined guarantees. This objective led us
to search for locally optimal solutions and use R&S procedures to establish and
compare them. ISC is not likely to work well under a very strict and tightly time-
constrained budget, since the user would have to provide arbitrary effort-based
transition rules for each phase, nor does it exploit an essentially unlimited
budget; the NGA is probably not the choice of globally convergent algorithm
we would make if that had been our goal. We contend that the time required
to develop a detailed simulation model, and the impact of the decision that will
be based on it, argue in favor of a liberal, but not infinite, computing budget in
most situations.

In our effort to bridge the gap between research and practice, we attempted to
resolve key implementation issues often overlooked in the research literature.
Of these, we can claim some success in incorporating constraints, developing
meaningful transition and stopping rules, and adaptively allocating simulation
effort without giving up convergence or statistical guarantees. Open issues not
addressed include incorporating stochastic constraints, multiple objectives, and
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mixed (integer, continuous, and categorical) decision variables. All of these need
solutions before we can claim a truly general-purpose OvS algorithm.

APPENDIX

In this Appendix we prove any new results not available in the literature (and
therefore cited in the article).

1. GLOBAL CONVERGENCE OF THE NGA

We require that the NGA satisfies the following requirements, where the spe-
cific values may differ from problem to problem.

(1) In the selection and mating steps of iteration k, any solution sampled in
iteration k − 1 has a probability at least p1 > 0 of being selected for crossover.

(2) In the crossover step, any parent solution has a probability at least p2 > 0
of being generated as an offspring.

(3) In the mutation step, any offspring generated in the crossover has a
probability at least p3 > 0 of being selected for mutation.

(4) In the mutation step, each coordinate may be selected with a probability
at least p4 > 0, and each feasible solution along the coordinate may be selected
with a probability at least p5 > 0.

In this section, we show that the NGA converges to a global optimal solution
as the number of iterations goes to infinity.

The NGA allocates at least �n ≥ log10(number of iterations) observations to
any previously simulated solution and n0 ≥ 1 observations to any new solution
in the evaluate solutions step. If we can show that all feasible solutions are
visited infinitely often as the number of iterations goes to infinity, then the
global convergence follows directly from the strong law of large numbers.

For any two solutions x1, x2 ∈ �, there exists a path in �, denoted
x1, y1, y2, . . . , y|�|−1, x2, such that any two consecutive solutions in the path
differ at most by one coordinate. Let Sk denote the set of solutions sampled in it-
eration k. If x1 ∈ Sk , then it is selected for crossover in iteration k+1 with a prob-
ability at least p1. If it is selected for crossover, it is generated as an offspring
with a probability at least p2; then it is selected for mutation with a probability
at least p3. If it is selected for mutation, then y1 will be sampled in iteration k+1
with a probability at least p4 p5. Therefore, Pr{y1 ∈ Sk+1|x1 ∈ Sk} ≥ ∏5

i=1 pi.

Then

Pr{x2 ∈ Sk+|�||x1 ∈ Sk}
= Pr{y1 ∈ Sk+1|x1 ∈ Sk} Pr{y2 ∈ Sk+2|y1 ∈ Sk+1}

× · · · × Pr{x2 ∈ Sk+|�||y|�|−1 ∈ Sk+|�|−1}

≥
(

5∏
i=1

pi

)|�|
. (4)

Since Eq. (4) holds for any pair of solutions x1, x2 ∈ �, then any solution may
be visited in any |�| consecutive iterations with a positive probability that
is bounded away from 0. Therefore, all solutions in � will be visited infinitely
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often as the number of iterations goes to infinity. Therefore, the NGA is globally
convergent.

B. CLEAN-UP INFERENCE

Let x̃∗ = argminx∈L g (x). ISC applies the “clean-up” procedure of Boesel et al.
[2003b] to the solutions in L, starting with the data that have already been
obtained prior to the clean-up phase. This procedure obtains additional repli-
cations as needed to guarantee to select x̃∗ with probability ≥ 1 − αC whenever
the data are normally distributed, the solutions are simulated independently,
and g (x̃∗) − minx∈L,x�=x̃∗ g (x) ≤ −δC where 1/2 < 1 − αC < 1 and δC > 0 are
user-specified parameters (1 −αC defaults to 0.95 in ISC). We prove our results
under the independence assumption because the complex sequential sampling
that occurs in the global and local phases makes it difficult to synchronize
random numbers so as to effectively use common random numbers [Law and
Kelton 2000], so we believe this is a reasonable approximation even if common
random numbers are used.

Let xB be the solution selected by this procedure. Then we will show that,
whatever the values of the g (x), x ∈ L, Pr

{
g (xB) ∈ Ḡ(xB) ± δC

} ≥ 1 − αC/2.

This is a new result, not proven in Boesel et al. [2003b].
Let b = δCt/h where h is the sampling constant used in the clean-up proce-

dure (specifically h = h(2, (1−αC/2)1/(|L|−1), n) is Rinott’s constant in the special
case of 2 solutions, confidence level (1 − αC/2)1/(|L|−1) and n degrees of freedom;
see Boesel et al. [2003b]), t = t1−(1− 1

2 (1−αC)1/|L|),n−1, and n is the minimum num-
ber of replications any solution in L received prior to transition to the clean-up
phase. Notice that this t value is not the t-value used in the screening proce-
dure in Boesel et al. [2003b], but rather is an artifact used to show that the
final confidence interval is valid.

The clean-up procedure requires each solution x ∈ L to receive

NC(x) = min

{
N (0)

C (x),

⌈
h2S2(x)

δ2
C

⌉}

replications, where N (0)
C (x) is the number of replications solution x received

prior to the clean-up phase and S2(x) is the sample variance of these replica-
tions. Notice that

Pr
{

g (xB) ∈ Ḡ(xB) ± b
} ≥ Pr

{
g (x) ∈ Ḡ(x) ± b, ∀x ∈ L

}
≥

∏
x∈L

Pr
{

g (x) ∈ Ḡ(x) ± b
}

, (5)

where (5) follows because the solutions are simulated independently and the
probability on the right-hand side is with respect to an experiment in which all
solutions in x ∈ L receive N (x) samples. But notice that

Pr
{

g (x) ∈ Ḡ(x) ± b
} = Pr

{
Ḡ(x) − g (x)

S(x)/
√

N (x)
∈ ±

√
N (x)

S(x)
b

}
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and √
N (x)

S(x)
b ≥ hS(x)

δ

b
S(x)

= t.

Therefore, Pr{g (x) ∈ Ḡ(x) ± b} ≥ (1 − αC/2)1/|L| and Pr{g (xB) ∈ Ḡ(xB) ± b} ≥
1−αC/2. The result that we want then follows by noting that t/h ≤ 1, so b ≤ δC.

ELECTRONIC APPENDIX

The electronic appendix for this article can be accessed in the ACM Digital
Libray.
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