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Abstract

Complex package distribution systems are designed using idealizations of network geome-

tries, operating costs, demand and customer distributions, and routing patterns. The goal is to

find simple, yet realistic, guidelines to design and operate a network integrated both by trans-

portation mode and service level; i.e., overnight (express) and longer (deferred) deadlines. The

decision variables and parameters that define the problem are presented along with the models

to approximate total operating cost. The design problem is then reduced to a series of optimiza-

tion subproblems that can be solved easily. The proposed approach provides valuable insight

for the design and operation of integrated package distribution systems. Qualitative conclusions

suggest that benefits of integration are greater when deferred demand exceeds express demand.

This insight helps to explain the different business strategies of package delivery firms today.
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This paper introduces design strategies and cost modeling techniques for multiple mode, multi-

ple service level package delivery networks where service levels are defined by guaranteed delivery

times (i.e., overnight, two-day delivery). Such research is critical at a time when new technology

and the global economy are revolutionizing freight transportation. It is important to understand

how companies adapt to these changes. For example, transportation providers now offer a wider

range of service levels to increase market share and utilize resources more efficiently. New network

configurations and routing strategies are possible when one considers integration across service

levels and transportation modes.

The design and operation of large-scale transportation networks are difficult due to the number

of decision variables and constraints, and their intricate interdependencies. This is particularly

true for the complex hierarchical networks adopted for package delivery. Unlike passengers in air

networks, shipments in freight networks can be routed in more circuitous ways to achieve economies

of scale and density, provided time constraints are not violated. Conventional network design and

routing models cannot sufficiently capture the complexity of multimode, multiservice networks.

This paper examines mode and service level integration for package delivery and presents a complete

modeling framework for strategic design problems for large-scale integrated distribution networks.

While the network design problem is quite complex, we demonstrate the ability to estimate costs

and obtain designs for such systems using continuum approximations. These estimates are used to

evaluate potential mergers between deferred and express package distribution carriers.

Section 1 discusses network configurations and routing principles for package delivery. Section

2 introduces the notation and assumptions of the continuum formulations of the network design

problem. Section 3 presents approximation methods for the network design problem and Section 4

the solution method. Section 5 presents a case study. Finally, Section 6 summarizes the research.
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1 Integrated package distribution networks

Package delivery firms operate very complex networks. A typical Federal Express or UPS package

passes through a hierarchy of terminals en route from origin to destination, transported by several

modes. Here we present a stylized version of package delivery networks based on idealizations of the

complex delivery networks. Two service levels are assumed: express and deferred demand. Express

items are highly time sensitive; deferred items are not. Two transportation modes are assumed: air

and ground. Local and access (regional) transportation is conducted by ground vehicles (delivery

vans, trucks, etc.), but long haul transportation can be performed by ground (tractor-trailers) and

air. In integrated delivery networks, express items are transported by air for long haul trips due to

tight time constraints.1 Deferred items may be sent by ground or air.

origin/destination
consolidation terminal

airport
main air hub

Facilities

local route
access route
long haul (air)

Routes

breakbulk terminal

long haul (ground)

Figure 1: Integrated package distribution network

An integrated distribution network, shown in Figure 1, operates as follows. Items travel via

local pick-up tours to the nearest regional consolidation terminal where items within the region are

consolidated for efficient long haul transportation. Items are then sent along access routes from

1Express items with nearby destinations may not travel by air. Such items are ignored in this study.
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consolidation terminals to either breakbulk terminals or airports, depending on the long haul mode.

Items traveling by air are delivered to the nearest airport for an evening flight to the main

hub. Aircraft may stop at a second airport to/from the hub to increase aircraft loads and maintain

daily frequencies. Items typically arrive at the main hub between 10 pm and 2 am, where they

are sorted by destination airport and loaded onto aircraft for morning departures. After arriving

at the destination airport, the ground process is reversed: items travel to a consolidation terminal

and then to their final destination.

The long haul ground system includes several breakbulk terminals, which, like airports, act as

gateways to the long haul network. However, unlike the air network, there is no single main hub.

All breakbulk terminals serve as hubs, albeit for smaller percentages of the total network volume.

Items are routed between consolidation terminals through two breakbulk terminals.

The network design problem determines ground and air network configurations (number and

location of terminals) and routing guidelines for items and vehicles. We study two distribution

strategies.

Fully integrated networks: integrated facilities and routing

Express items are sent by air; deferred items travel either way. Economies of density can yield

savings in local transportation. Flexible routing allows excess air capacity to be filled with deferred

items, reducing ground transportation needs. Consolidation terminals serve both service types.

Non-integrated networks: segregated facilities, segregated routing

Non-integrated networks are simply the superposition of two separate networks offering express

and deferred service independently. Consolidation terminals are mode-specific.
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1.1 Related literature

Two principal approaches have been employed in the literature to address components of this

problem: mixed-integer programming with detailed discrete data, and continuum approximations.

While the former provide a higher level of detail, the latter are more revealing of “the big picture”.

Numerical optimization approaches to network modeling have been studied extensively; see

[1, 3, 25]. As discussed in these and other more general references; e.g., [26], optimal solutions can

be found numerically for small instances. In some special cases, it is possible to solve large instances.

In general, however, as the network size increases, heuristic solution approaches are often necessary.

Numerical optimization models have been successful in solving tactical and operational problems

for transportation networks, offering detailed, cost-minimizing operating plans; see review in [7], as

well as [2, 4, 29]. Yet, collecting demand and cost data for strategic problems can be time-consuming

and, at times, impossible. These difficulties are compounded if demand is uncertain.

On the other hand, continuum approximation models use smooth functions to describe the

data, such as a demand density function that varies with location; see for example [12]. Smooth

functions are also used to describe decisions (in place of decision variables), e.g. as in the case

of spatially varying terminal densities. Knowledge of these decision functions gives enough infor-

mation to develop a network configuration and an operating plan with a predictable cost even

with uncertain demand; see [10]. Early work on approximation methods ([15, 17, 27]) found that

approximations provide near optimal solutions and offer valuable insight into operating strategies

and network design. Whereas numerical optimization models perform better on smaller instances,

the opposite is true with continuum approximations. The larger the instance, the more accurate

the approximations become; see [5, 10, 14]. Often continuum formulations can be decomposed into

smaller components that allow the complete solution space to be explored systematically.

Although continuum approximation methods are well suited for the design of large-scale trans-
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portation networks, the topic has not been explored thoroughly. This paper fills the following

methodological gaps identified in [24]: (i) current multiple origin/multiple destination distribution

models do not adequately incorporate multiple transshipments and multistop (peddling) tours; (ii)

current models ignore additional operating costs beyond transportation and inventory; (iii) current

models have not considered the cost of repositioning empty vehicles, except [19, 22]; and (iv) current

models do not consider multiple service levels although several studies have considered distribution

of time sensitive items, see [8, 9, 20, 23]. Multiple transportation modes have been included in

a limited number of models, see [18]. This paper demonstrates, as is stressed in the continuum

literature, that numerical optimization and continuum methods can and should be used together.

Continuum approximations are ideally suited for planning purposes, when demand forecasts are

uncertain and aggregate. They can suggest system configurations, even before precise data are

available. Once detailed data become available, operational details can be further developed with

discrete optimization.

2 Continuum approximations for the network design problem

The network design problem minimizes expected transportation costs (fixed vehicle costs and vari-

able operating costs) and facility costs (fixed terminal charges, handling costs, and storage expenses)

over a planning horizon while meeting service level constraints. This problem is part of a two-phase

approach in which the network is designed first and then operating plans are developed for the fixed

network. As discussed in [11], the performance of the overall distribution system can be improved

if the network is designed with the subsequent operating plans in mind. Detailed demand data are

rarely available when the planning horizon is long; forecasts typically predict continuous demand

rates for broad geographic areas. This leaves two options: (i) discretize the data and run a precise

but hard discrete optimization; or (ii) run an easy but approximate continuum optimization and

6



discretize the solution. A discrete formulation of the network design problem is presented in [32].

While it is possible to quantify facility costs, it is considerably more difficult to quantify transporta-

tion costs and operating constraints in a discrete formulation. The expressions depend on terminal

locations and demand allocations, and must account for the different ways in which vehicles may be

routed. Moreover, even if one is successful in this endeavor, heuristics are needed to solve realistic

instances with hundreds or thousands of possible physical locations. The need to model integrated

networks complicates the problem even further. Fortunately many of these difficulties can be over-

come with a continuum approximation, since, as shown later, continuity allows one to decompose

the problem geographically.

In what follows, we develop approximations to solve the strategic network design problem, which

incorporate operating strategies. Capturing all complexities of the operating plans is not feasible;

however, developing a model that considers even rudimentary operating issues can improve overall

system performance. Therefore, we focus on a simplified network design problem, which can be

modified to account for specific operating plans, as done in [31] and discussed briefly in Section 6.

In the continuum formulation, the structure of the distribution network over a service area

A is defined by the network topology, and by demand, level of service, and cost data functions

(parameters) that may vary with the coordinates, x, of points on the plane. The solution is

described in terms of decision functions of location (variables). A summary of the notation is

provided in the appendix.

2.1 Network representation

A typical path of an item from origin to destination is shown in Figure 2(a). Items travel from an

origin, to a consolidation terminal, to the long haul network via an airport or breakbulk terminals,

and then the process is reversed on the way to the final destination. Since no step is skipped
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in this hierarchical scheme, operating costs can be separated by distribution level and terminals

visited. The set of distribution levels is: L = {0, 1, 2}: local (0), access (1) and long haul (2).

Level 0 facilities are origins and destinations; level 1 facilities are consolidation terminals; and level

2 facilities are breakbulk terminals in ground networks, and airports and the main air hub in air

networks. Let T = {C,B, P,H} denote the set of terminals, consisting of consolidation terminals

(C), breakbulk terminals (B), airports (P ), and main air hub (H).

destination

Air hub
BBT

Airport

BBT

Airport

CT

CT

origin

(a) origin to destination path (b) distribution levels for ground network

Level 0 (local)

Level 1 (access)

Level 2 (long haul)

Level 0
Level 1

Figure 2: Distribution from origin to destination

Let S = {E,D} denote the set of service levels for express and deferred demand, and the labels

A and G (air and ground) network type. The air network is the set of links and terminals used by

items traveling by air, including the ground portion of their travel. The ground network is the set

of links and terminals used by items not traveling by air.

2.2 Demand parameters

As discussed earlier, data are often available only on an aggregate level for strategic design problems.

Aggregated data can be used to obtain customer density and demand estimates, as shown in [6].
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Consistent with the continuum approximation literature on time-sensitive delivery ([8, 9, 20,

23]), we consider stationary, deterministic demand data. Extensions for stochastic demand are

shown in Section 3.7. Extensions for seasonal fluctuations such as holiday demand surges are

presented in [31]. Systematic demand variations over the course of the day can also be incorporated.

However, since pickup and delivery operations are concentrated over a few hours and the system

operates on a daily cycle, the demand distribution specific by time-of-day should not significantly

influence operating costs, conditional on total demand.

Origin-destination demands are estimated with temporal demand rates λs(xo, xi) from a region

of unit area about xo to a region of unit area about xi for service level s ∈ S (items/area2 ∗

time). Let λsi (x) denote the trip attraction rate (inbound flow) in a region of unit area about x

(items/area*time) where λsi (x) =
R
xo∈A λ

s(xo, x)dxo. Let λso(x) denote the trip generation rate

(outbound flow) about x (items/area*time) where λso(x) =
R
xi∈A λ

s(x, xi)dxi.

Exact customer location data are estimated with spatial customer densities for service level,

δs(x) (customers/area). The number of points in a subregion A0 of A is

NA0 =
Z
x∈A0

δs(x)dx

If A0 is chosen such that δs(x) is nearly constant over the subregion, then the number of points is:

NA0 ≈ δs(x)|A0|

where |A0| denotes the area of subregion A0.

2.3 Decision variables

Discrete location variables are replaced with continuous variables that specify the density of termi-

nals of type y ∈ T within a region, ∆y(x) (terminals/area). Additional decision variables describe

item and vehicle routings. Indices B = {i, o} define trips inbound to and outbound from a terminal,
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and V = {a, t} define vehicle type (air and truck).2 A set of variables {hm,bl (x)} defines the route

headways for distribution level l ∈ L for network m = A,G in direction b ∈ B. Headways are

time intervals between consecutive dispatches; as such they indicate how often a route is run. A

set {nm,bl (x)} defines the number of stops on a route; {vm,bl (x)} defines the shipment size for each

stop; and {rml (x)} defines the average linehaul distance for the route between an origin (either a

customer or a terminal) to the region in which the stops (either terminals or customers) are located.

2.4 Service level constraints

A series of service level parameters enforces express and deferred deadlines. The maximum headway

length for a route of type l ∈ L is Hm
l for m = A,G. Tight restrictions on express item delivery

are enforced by assuming that HA
l · 1 day. We limit the number of stops on a route of type l ∈ L

by introducing an upper bound Nm
l . As is typical in time-sensitive package delivery operations,

the length of a delivery route is often dictated by time constraints (number of stops) and not by

physical volume. A maximum airport service radius, ρ, is introduced to meet air time restrictions.

2.5 Additional assumptions

Sorting costs at facilities are approximated as constants independent of all decision variables, as

shown in [31]. In-vehicle inventory costs are not considered; therefore, ground vehicles make as many

stops as allowed by Nm
l and vehicle capacity V ml ; see the full vehicle theorem in [10]. Therefore,

ground vehicles will reach either their physical capacity or their maximum number of stops. It is

assumed that the long haul air network is optimally configured for express items only (i.e., airport

locations are determined by express demand only which, in turn, specifies available excess capacity).

It is assumed that as many deferred items as possible are shifted to air in integrated networks. This

2In the discussion here, one truck size is assumed for simplicity. Numerical results in Section 5 consider three

truck sizes: the largest trucks for long haul routes, smaller trucks for access routes, and delivery vans for local routes.
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is reasonable for large ground networks, as confirmed in [31]. The fractional shift in direction b ∈ B

is ωb(x). It is assumed that each terminal is centrally located within an approximate circular service

region; therefore, rml (x) is approximated as 2/3 of the radius of the circular region.

rml (x) ≈
2

3
(π∆y(x))

− 1
2 (1)

This estimate is on the low side, but quite accurate for desirable terminal arrangements; see [10].

3 Continuum approximation: logistic cost functions

For a specific pair of origin-destination regions, the average cost per item per unit time, z, is

comprised of the following components:

z = zlocal + zaccess + zlonghaul + zreposition + zCT + zairport + zBBT + zhub (2)

Equation (2) contains transportation costs for each distribution level: zlocal, zaccess, and zlonghaul;

terminal costs: zCT , zairport, zBBT , and zhub; and vehicle repositioning costs: zreposition. Formulae

for these components are developed in Sections 3.1 - 3.5. The sum (integral) of z across all items

over the planning horizon, given in Section 3.6, is an approximation of the total system cost.

The following cost constants are used3:

cud cost of overcoming distance, for vehicle of type u ∈ V ($/distance)

c
0u
d marginal transportation cost per item, for vehicle of type u ∈ V ($/item*trip)

cuq cost of stopping a vehicle of type u ∈ V at a terminal or customer ($/stop)

cf annualized fixed terminal cost ($/terminal)

c0f terminal handling cost per item ($/item)

ch storage (rent) cost for items ($/item*time)

3For ease of illustration, facilities are shown to have the same costs; costs do vary by facility type in Section 5.
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In addition, the following auxiliary functions are used:

ΛAb (x) directional air network demand, Λ
A
b (x) = λEb (x) + ωb(x)λ

D
b (x), for b = i, o

ΛGb (x) directional ground network demand, Λ
G
b (x) = (1− ωb(x))λ

D
b (x), for b = i, o

ΛmT (x) bidirectional network-specific demand, Λ
m
T (x) =

P
b∈B Λ

m
b (x), for m = A,G

Λb(x) directional demand for combined networks, Λb(x) =
P
m=A,G Λ

m
b (x), for b ∈ B

ΛT (x) bidirectional demand for combined networks, ΛT (x) =
P
b∈B Λb(x)

δ(x) total customer density for combined networks, δ(x) =
P
s∈S δ

s(x)

3.1 Local transportation costs

Local costs account for pickup and delivery costs between origins/destinations and consolidation

terminals. In the morning, delivery vehicles depart from a consolidation terminal and complete their

deliveries. Vehicles that will be used for pickup tours in the afternoon are then repositioned without

returning to the terminal, and the rest return. In the afternoon, pickup tours are conducted and

then vehicles return to the consolidation terminal. It is assumed that pickup and delivery routes

are designed independently. Repositioning costs are covered in Section 3.4.

We introduce a function f(r, v, n, δ) to designate the average unit cost for items delivered in

batches of size v on vehicle routing problem (VRP) routes making n stops to customers of density

δ and r distance units away from a depot. It is known (see, e.g., [10]) that:

f(r, v, n, δ) ≈ c
0u
d +

rcud + c
u
q

nv
+

µ
n− 1

n

¶Ã
cudk(δ)

− 1
2 + cuq
v

!
(3)

where k is a constant dependent on the distance metric; k ≈ 0.8 for grids4. The first component

of (3) represents the per-item handling cost, independent of distance. The second term represents

the linehaul cost of travel from the depot to the customer region with a stop at the depot. The last

term represents the local detour cost of travel between customers in the region, including stops.
4The parameter k can be estimated through simulation, see [10].
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The cost expression and constraints for each routing direction b and network type m are then:

zm,blocal(x) = f(r
m
0 (x), v

m,b
0 (x), nm,b0 (x), δm(x)) (4a)

subject to:

nm,b0 (x)vm,b0 (x) · V m0 (4b)

1 · nm,b0 (x) · Nm
0 (4c)

hm,b0 (x) · Hm
0 (4d)

vm,b0 (x) =
Λmb (x)

δm(x)
hm,b0 (x) (4e)

rm0 (x) =
2

3
(π∆C(x))

− 1
2 (4f)

rm0 (x), v
m,b
0 (x), hm,b0 (x) > 0 (4g)

Equation (4b) ensures that loads do not exceed vehicle capacity. Equation (4c) ensures that routes

have at least one stop and prohibits long routes. Its upper bound is used instead of a time constraint

on the length of a shift to avoid the introduction of more notation.5 Equation (4d) ensures that

customers are visited with a minimum frequency. Equation (4e) expresses the shipment size vm,b0 (x)

as a function of the demand accumulated during a headway using Little’s formula (δG(x) = δD(x)

and δA(x) = δE(x) for non-integrated networks; δm(x) = δ(x) for integrated networks). Equations

(4d) and (4e), combined, limit the shipment sizes. Equation (4f) expresses the dependence between

linehaul distance and terminal density as stated in equation (1).

Decision variables vm,b0 (x) and rm0 (x) are uniquely determined by h
m,b
0 (x) and ∆C(x), respec-

tively, and can be removed from the formulation. However, the presentation is cleaner if they are

retained until Section 4. With non-integrated networks, four copies of zm,blocal(x) appear in expression

(2). With integrated networks, only two copies of zblocal(x) (one for each direction) appear. The

same is true of constraints.

5Often the number of stops limits items in a vehicle; a rough approximation of the average batch size is sufficient.
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3.2 Access transportation costs

Access tours between consolidation terminals and breakbulk terminals or airports are similar to

local tours. Again, the VRP approximation is used. The average access cost per item is:

zm,baccess(x) = f(r
m
1 (x), v

m,b
1 (x), nm,b1 (x),∆C(x)) (5a)

subject to:

nm,b1 (x)vm,b1 (x) · V m1 (5b)

1 · nm,b1 (x) · Nm
1 (5c)

hm,b1 (x) · Hm
1 (5d)

vm,b1 (x) =
Λmb (x)

∆C(x)
hm,b1 (x) (5e)

rG1 (x) =
2

3
(π∆B(x))

− 1
2 rA1 (x) =

2

3
(π∆P (x))

− 1
2 (5f)

rm1 (x), v
m,b
1 (x), hm,b1 (x) > 0 (5g)

For integrated networks, one must specify the network demand rates that appear in (5e) with

another equation since the network demand rates no longer equal the service level demand rates.

Recall that ΛAb (x) = λEb (x)+ωb(x)λ
D
b (x) and Λ

G
b (x) = (1−ωb(x))λ

D
b (x) for b ∈ B, where ωb(x) ≥ 0.

Excess aircraft capacity determines the values of ωb(x) and this is discussed next.

3.3 Long haul transportation costs

3.3.1 Air network

Since all items traveling by air are served through one main hub, the problem decomposes into

a many-to-one distribution problem inbound to the hub, and a similar one-to-many problem out-

bound. In both directions, we use the VRP approximation of one depot (the air hub) serving

several customers (the airports). Operating headways are restricted to one day (hA2 = h̃ = 1 day),
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and are not decision variables. The average linehaul distance, rA2 (x) is simply the distance from x

to the hub which depends on the location of the main hub. As shown in [31], it may be inefficient

to operate a symmetric air network (inbound trips to a region mirror outbound trips from that

region). Thus, inbound and outbound long haul trips are modeled separately.

zA,blonghaul(x) = f(r
A
2 (x), v

A,b
2 (x), nA,b2 (x),∆P (x)) (6a)

subject to:

nA,b2 (x)vA,b2 (x) · V A2 (6b)

1 · nA,b2 (x) · NA
2 (6c)

vA,b2 (x) =
ΛAb (x)

∆P (x)
h̃ (6d)

vA,b2 (x) > 0 (6e)

∆P (x) ≥
1

ρ2π
(6f)

Constraint (6f) ensures that the service radius from an airport does not exceed a maximum

distance ρ to guarantee the timely completion of access and local tours.

With integrated routing, a fraction of deferred items may travel by air, provided excess capacity

exists. Constraint (6g) is added to restrict the amount shifted ωb(x) by the available capacity.

nA,b2 (x)h̃

∆P (x)

¡
νωb(x)λ

D
b (x) + λEb (x)

¢
· V A2 , for ν ≥ 1,ωb(x) · 1 (6g)

The constant ν is added because it is not economical to fill aircraft with deferred items to the same

capacity level as with more profitable express items since operating costs increase with load size.

3.3.2 Ground network

Since the ground network contains multiple breakbulk terminals, the problem cannot be decom-

posed in the same manner. Fortunately, continuum approximation models for many-to-many non-

integrated systems with breakbulk terminals have been developed. In [10], it is shown that the
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vehicle distance traveled between breakbulk terminals can be estimated without specifying the ex-

act routing of items when vehicles travel full. Vehicles can travel full either by increasing headways

or visiting multiple terminals
¡
nG2 (x)v

G
2 (x) = V

G
2

¢
. Further, as the number of terminals in the ser-

vice region
¡R
x∈A∆B(x)dx

¢
increases, the linehaul component of this distance rapidly approaches

the ratio of the total item-miles demanded and the vehicle capacity. The linehaul component is

thus independent of all decision variables. It is not included in the cost model, but added as a

constant to the final cost. The detour component associated with multiple stops is estimated by:

µ
nG2 (x)− 1

nG2 (x)

¶Ã
cdk(∆B(x))

− 1
2 + cq

vG2 (x)

!
(7a)

Items also incur a cost c
0t
d for handling. Shipment size is approximated as follows. The average

ground network demand rate for the service region across all origins and destinations is Λ̄G =R
xo∈A

R
xi∈A

ΛG(xo,xi)
|A|2 dxidxo where ΛG(x, xi) is the deferred demand rate: λD(x, xi) reduced by the

amount shifted to air. The average breakbulk terminal density is ∆̄B =
R
x∈A

∆B(x)
|A| dx. The average

shipment size over all destinations collected from a breakbulk terminal at x is approximated by

vG2 (x) ≈
Λ̄G|A|hG2 (x)

∆B(x)
. (7b)

3.4 Vehicle repositioning costs

3.4.1 Local and access levels

On local tours, the number of vehicles dispatched for morning deliveries may be insufficient to cover

afternoon pick-up; extra empty vehicles must be deployed for collection. Conversely, vehicles may

return empty to the consolidation terminal after morning distribution if inbound demand exceeds

outbound demand. The same is true for access trips. It is assumed that all local and access

tours operate from one terminal. Thus, the number of repositioning trips is simply the number of

vehicles needed to serve the demand imbalance, |Λmo (x) − Λ
m
i (x)|. For vehicles with capacity V
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operating in a region of terminals with density ∆(x), the number of trips is
|Λmo (x)−Λmi (x)|

∆(x)V . The total

repositioning cost is therefore equal to the number of trips multiplied by the distance cost and the

average distance from the terminal to the customers, r(x). Prorating this cost by the total items

served by the terminal,
ΛmT (x)
∆(x) , and replacing r(x) with

2
3(π∆(x))

− 1
2 , the average cost per item is:

2
3cd|Λ

m
o (x)− Λ

m
i (x)|

ΛmT (x)V
(π∆(x))−

1
2 . (8)

3.4.2 Long haul level

Repositioning empty vehicles between breakbulk terminals is more difficult to model since demand

imbalances between breakbulk terminals require vehicle repositioning between terminals. If demand

is balanced, the repositioning term between breakbulk terminals is zero. The added repositioning

costs due to systematic imbalances can be bound tightly from above by a function of the origin-

destination demand table, independent of all decision variables; see [13]. Therefore, long haul

repositioning is not included in the optimization phase, but is added to the total system cost.

Repositioning costs differ for integrated networks due to the demand shift from ground to air.

3.5 Terminal costs

Terminal costs consist of handling costs, facility charges, and storage fees. The value of decision

variables and parameters vary across terminal types, but the functional form of the terminal cost

is the same. This section introduces the generic cost model; specific costs for each terminal type

are included in Section 3.6.

Consider a terminal serving an inbound and outbound flow of Q(x) items per unit time given

by the trip attraction and generation, Q(x) =
Λmi (x)
∆y(x)

+ Λmo (x)
∆y(x)

. The cost per item for a terminal is

g
¡
Q(x), ho(x), hi(x)

¢
= c0f +

cf
Q(x)

+
X
b=i,o

chhb(x) (9)
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The first term represents handling costs, and the second represents a fixed cost per terminal which

is prorated by the flow Q(x). The final term represents a storage cost dependent on the length of

time an item is held at a terminal. It is assumed that this length of time is proportional to the

routing headways, hb(x), assuming routes are not coordinated; see [10].

3.6 Complete model

A complete logistic cost function, containing all transportation and terminal costs, is used to obtain

optimal designs and compare integration strategies. This function integrates the cost components

described in the previous sections over the item flow in the service area. We present the expression

for an integrated network; thus, no network subscript is needed for local operations.

min z =

Z
x∈A

½X
b∈B

Λb(x)

Ã
c
0t
d +

r0(x)c
t
d + c

t
q

nb0(x)v
b
0(x)

+

µ
nb0(x)− 1

nb0(x)

¶Ã
ctdk(δ(x))

− 1
2 + ctq

vb0(x)

!!

+
X
b∈B

X
m=A,G

Λmb (x)

Ã
c
0t
d +

rm1 (x)c
t
d + c

t
q

nm,b1 (x)vm,b1 (x)
+

Ã
nm,b1 (x)− 1

nm,b1 (x)

!Ã
ctdk(∆C(x))

− 1
2 + ctq

vm,b1 (x)

!!

+
X
b∈B

ΛAb (x)

Ã
c
0a
d +

rA2 (x)c
a
d + c

a
q

nA,b2 (x)vA,b2 (x)
+

Ã
nA,b2 (x)− 1

nA,b2 (x)

!Ã
cadk(∆P (x))

− 1
2 + caq

vA,b2 (x)

!!

+ ΛGo (x)

Ã
c
0t
d +

µ
nG2 (x)− 1

nG2 (x)

¶Ã
ctdk(∆B(x))

− 1
2 + ctq

vG2 (x)

!!

+
2
3 |Λo(x)− Λi(x)|

V G0
p
π∆C(x)

ctd +
2
3 |Λ

A
o (x)− Λ

A
i (x)|

V G1
p
π∆P (x)

ctd +
2
3 |Λ

G
o (x)− Λ

G
i (x)|

V G1
p
π∆B(x)

ctd

+ ΛT (x)c
0
f +∆C(x)cf +

X
b∈B

chΛb(x)h
b
0(x) + Λ

G
T (x)c

0
f +∆B(x)cf

+ΛAT (x)c
0
f+∆P (x)cf+

X
b∈B

chΛ
G
b (x)h

G,b
1 (x)+ΛGo (x)chh

G
2 (x)+

X
b∈B

chΛ
A
b (x)

³
h̃+ hA,b1 (x)

´¾
dx

(10)
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The integrand of (10) begins with local transportation costs, summing both collection and

delivery costs. The next line represents access costs for trips to and from airports and breakbulk

terminals. The following two lines represent long haul costs for air and ground transportation,

respectively. The next line includes the repositioning costs for local and access vehicles. The final

two lines include terminal costs. The goal is to choose the decision functions that minimize (10)

subject to constraints defined in the previous subsections. The problem is reduced in Section 4 to

a series of subproblems that can be easily programmed into a spreadsheet.

3.7 Stochastic demand

The continuum formulation can be extended easily to account for stochastic demand. Here we

highlight how this is done; for further details see [31]. Due to different characteristics, uncertainty

is treated differently for each mode and service level. We introduce slack in the capacity constraints

for the air network and add additional repositioning costs in the ground network.

Demand variations are modeled as a stationary process with independent increments and a

location-dependent index of dispersion (variance-to-mean ratio). More specifically, the demand in

any time interval between any two regions of small area (e.g., about points xo and xi) are assumed

to be independent of other demands if at least one of the following conditions is satisfied: (1) the

two origin areas do not overlap; (2) the two destination areas do not overlap; (3) the two time

intervals do not overlap. Inbound and outbound demands in a region have variance-to-mean ratios

γsb (x), s ∈ S, b ∈ B (items). It is assumed that these values do not vary over time.

In the air network, the system is overdesigned to minimize the possibility of express demand

exceeding capacity. Thus, in the design process, V A2 is replaced with a smaller quantity θA,bV A2 for

19



some positive θA,b < 1, such that:

θA,bV A2 + 3
q
θA,bγEb V

A
2 · V A2 (11)

Across many days, this leaves an average excess capacity of (1− θA,b)V A2 in all aircraft, equivalent

to three standard deviations of the expected vehicle load, but ensures that overflows would be

unlikely. This slack is added to (6g) to define the expected shift amount of deferred items to air.

In the ground network, additional strategies to handle uncertainty, such as rerouting vehicles,

are available due to relaxed time constraints. Vehicles can still travel full, although routing may

change slightly from day to day. This does not change the full vehicle miles traveled at all levels, nor

does it change the peddling costs. However, the need for empty vehicle repositioning increases since

empty vehicles may be rerouted to accommodate demand fluctuations between terminals.6 The

vehicle repositioning cost due to stochastic effects alone can be approximated as a transportation

problem, as shown in [13], and added to deterministic repositioning costs.7 The average number

of total empty vehicle miles across many days required to reposition vehicles at the least cost each

day is a function of the total area of the service region A, the number of terminals, ∆̄y(x)|A|, and

σy(x), where σy(x) is the standard deviation of the flows inbound to and outbound from a terminal

equal to

r
γGi (x)Λ

G
i (x)+γ

G
o (x)Λ

G
o (x)

∆y(x)V
. The stochastic repositioning cost per terminal per unit time is:

zreposition = c
t
dσy(x)∆y(x)

− 1
2
¡
1 + 0.078 log2(∆̄y(x)|A|)

¢
(12)

In order to apply the area-decomposition solution technique, the expected terminal density must

be replaced with the local terminal density.

6No repositioning of delivery vans occurs between consolidation terminals because it is assumed that a sufficient

supply of vans exists at each terminal and demand fluctuations can be absorbed by holding items across days.
7This is conservative since this sum is the average cost obtained by a superposition of the deterministic solution

and the TLP solution including only the stochastic deviation from the mean, which is a feasible (sub-optimal) solution

of the real problem.

20



4 Solution method

This section describes how the problem can be separated into a series of subproblems that can be

solved easily. First (10) is simplified by expressing it in terms of only the terminal densities and

operating headways. The subproblems are presented in Sections 4.1 - 4.4.

Recall that ground vehicles must either reach their capacity or their maximum number of stops;

i.e., either (4b) or (4c) must be binding (on the upper side). The same is true for (5b) and (5c), and

for (6b) and (6c). Therefore, we can replace nm,bl (x) with min

½
Nm
l ,

Vml
vm,bl (x)

¾
. Equations (4d), (5d),

and (6d) are used to eliminate vm,bl (x) and equations (4e) and (5e) to eliminate rml (x). Recall that

ωb(x) can be set equal to the largest possible value consistent with (6g) and eliminated. Therefore,

only terminal densities and operating headways remain. The complete model is presented below

in a compact form that highlights these decision variables. Expressions for the constants α, β, χ,

ψ, and Π are given in the appendix. For further economy of notation, the dependence of these

constants on x is not explicitly stated. The complete model is:

min z =

Z
x∈A

½X
b=i,o

³
αb1h

b
0(x) + α2(h

b
0(x))

−1
´
+ β1∆C(x)

− 1
2

+
X
b=i,o

X
m=A,G

Ã
β2

p
∆C(x)

hm,b1 (x)
+ β3

∆C(x)

hm,b1 (x)
+ βb4h

m,b
1 (x)

!
+ β6∆C(x)

+ χ1∆
− 1
2

P (x) + χ2∆P (x) + χ3∆
1
2
P (x)

+ ψ1∆
− 1
2

B (x) + ψ2∆B(x) + ψ3
∆B(x)

1
2

hG2 (x)
+ ψ4

∆B(x)

hG2 (x)
+ ψ5h

G
2 (x) + Π

¾
dx (13a)
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subject to:

Λb(x)δ(x)

N0V0
· hb0(x) ·

Λb(x)δ(x)

V 0
∀b ∈ B (13b)

Λmb (x)

V m1
·
∆C(x)

hm,b1 (x)
·
Nm
1 Λ

m
b (x)

V m1
∀b ∈ B;m = A,G (13c)

ΛAb (x)

V A2
· ∆P (x) ·

NA
2 Λ

A
b (x)

V A2
∀b ∈ B (13d)

Λ̄G|A|

V G2
·
∆B(x)

hG2 (x)
·
NG
2 Λ̄

G|A|

V G2
(13e)

0 < hm,bl (x) · Hm
l ∀b ∈ B;m = A,G; l ∈ L (13f)

∆P (x) ≥
1

ρ2π
(13g)

Note that (13) can be decomposed into five classes of subproblems that involve the following groups

of decision functions:

1o local outbound headways, ho0(x)

1i local inbound headways, hi0(x)

2 consolidation terminal densities and access headways, ∆C(x), h
m,b
1 (x)

3 airport densities, ∆P (x)

4 breakbulk terminal densities and long haul ground headways, ∆B(x), h
G
2 (x).

The subproblems in each class are analyzed below.

4.1 Subproblems 1o and 1i: local headways

For b = i, o, these subproblems are:

min z1b =

Z
x∈A

µ
αb1h

b
0(x) +

α2

hb0(x)

¶
dx (14a)

subject to:

Λb(x)δ(x)

N0V0
· hb0(x) ·

Λb(x)δ(x)

V0
(14b)

0 < hb0(x) · H0 (14c)
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Note that (14) can be further decomposed by x because the integrand and the constraints are local

in nature. Hence, one can simply minimize the integrand of (14a) for every x and sum across

all subdivisions of the total area. This is the geographic decomposition mentioned earlier. Since

the integrand is a simple economic order quantity (EOQ) problem, the optimal headway can be

expressed in a simple form: hb0(x)
∗ =

q
α2
αb1
if this value satisfies the constraints. Otherwise, it is one

of the extreme points defined by the constraints. The result should be intuitive, since with higher

transportation costs, headways are lengthened, and with higher rent costs, headways are shortened.

We find that for reasonable values of the parameters, (14c) is binding at its upper bound.

4.2 Subproblem 2: consolidation terminal densities and access headways

Subproblem 2 is:

min z2 =

Z
x∈A

µ
β1∆C(x)

− 1
2 +

X
b=i,o

X
m=A,G

Ã
β2

p
∆C(x)

hm,b1 (x)
+ β3

∆C(x)

hm,b1 (x)
+ βb4h

m,b
1 (x)

!
+ β6∆C(x)

¶
dx (15a)

subject to:

Λmb (x)

V m1
·
∆C(x)

hm,b1 (x)
·
Nm
1 Λ

m
b (x)

V m1
b ∈ B;m = A,G (15b)

0 < hm,b1 (x) · Hm
1 b ∈ B;m = A,G (15c)

On the surface, subproblem 2 is more complicated than subproblem 1 because it involves a non-

convex objective function and non-linear constraints. Fortunately, the following changes of variable

transform (15) into a convex problem with linear constraints: wC(x) = ln(∆C(x)), wm,b(x) =

ln(hm,b1 (x)), b ∈ B;m = A,G. The transformed problem is:

min z20 =

Z
x∈A

µ
β1e
−wC (x)

2 +

X
b=i,o

X
m=A,G

³
β2e

wC (x)

2
−wm,b(x) + β3e

wC(x)−wm,b(x) + βb4e
wm,b(x)

´
+ β6e

wC(x)

¶
dx (16a)
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subject to:

ln

µ
Λmb (x)

V m1

¶
· wC(x)− wm,b(x) · ln

µ
Nm
1 Λ

m
b (x)

V m1

¶
b ∈ B;m = A,G (16b)

wm,b(x) · ln(H
m
1 ) b ∈ B;m = A,G (16c)

This subproblem can also be decomposed by location. Since the transformed problem is convex, it

can be solved with gradient search techniques.

The same spatial decomposition and logarithmic transformation techniques reduce subproblems

3 and 4 to simple convex programs.

4.3 Subproblem 3: airport densities

The following change of variable is introduced: wP (x) = ln(∆P (x)). Subproblem 3 is then:

min z30 =

Z
x∈A

³
χ1e
−wP (x)

2 + χ2e
wP (x) + χ3e

wP (x)

2

´
dx (17a)

subject to:

ln

µ
ΛAb (x)

V A2

¶
· wP (x) · ln

µ
NA
2 Λ

A
b (x)

V A2

¶
b ∈ B (17b)

w2(x) ≥ ln(
1

ρ2π
) (17c)

This can be decomposed geographically by x and easily solved.

4.4 Subproblem 4: breakbulk terminal densities and long haul ground headways

The terminal density and headway variables are transformed as follows: wB(x) = ln(∆B(x)),

w2(x) = ln(h
G
2 (x)). This results in:

min z40 =

Z
x∈A

³
ψ1e
−wB(x)

2 + ψ2e
wB + ψ3e

wB(x)

2
−w2(x) + ψ4e

wB(x)−w2(x) + ψ5e
w2
´
dx (18a)
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subject to:

ln

µ
Λ̄G|A|

V G2

¶
· wB(x)− w2(x) · ln

µ
N2Λ̄

G|A|

V G2

¶
(18b)

w2(x) · ln(H
G
2 ) (18c)

This subproblem can again be decomposed by location and solved easily. Hence, the entire problem

has been reduced to a series of easily solved convex subproblems.

5 Case study

The design methodology introduced in Sections 3 and 4 is used to obtain network configurations

for large package delivery networks roughly the size of the contiguous United States. Operating

costs and statistics are derived from [23] and company literature. Population density is used as

a proxy for package demand rates (λ) and housing density as a proxy for customer density (δ).

The 1990 U.S. census includes population, housing counts, land area and geographic coordinates

for all Metropolitan Statistical Areas (MSA) in the United States; see [34]. The largest MSA’s

are aggregated into groups of common demand and geographic features to form twenty subregions.

The subregions are large enough to contain multiple terminals, yet small enough such that average

network characteristics (demand levels, distances to main air hub, etc.) are representative of the

entire subregion. The entire service region is 2,500,000 mi2. The areas of the twenty subregions

range from 16,383 mi2 to 225,974 mi2.

We focus on the following question: given a pair of non-integrated networks for deferred and

express demand, when does integration significantly reduce costs? In a series of test cases, deferred

demand levels are increased with the goal of determining the level of deferred demand required

to justify integration. Both deterministic and random demands are considered. In Figure 3, the

total savings achieved through integration is plotted as a percent of the total pre-integration cost
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of the original air network. The x-axis represents the average daily deferred demand and the figure

indicates the point at which deferred demand exceeds express demand. An average demand of

1.8 million packages per day are assumed for express items. Deferred demand ranges from 0 (no

integration) to 5.2 million packages per day. On the y-axis, the total (air and ground) network cost

savings divided by the total pre-integration air network costs are plotted.
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Figure 3: Cost savings from integration

As the figure indicates, the benefits of integration increase as deferred demand increases. Express

carriers may be reluctant to integrate operations with deferred carriers when the level of deferred

demand is significantly less than that of express. However, savings grow quickly as deferred demand

increases, even before deferred demand equals express demand. The growth rate of savings decreases

and savings reach an asymptote once excess air capacity is filled and the maximum benefits of

local transportation integration are realized. In addition, the figure reveals that savings increase

significantly when demands are uncertain. Additional savings may be achieved when it is necessary

to overcapacitate the air network for seasonal demand fluctuations. This insight helps to explain

the different business strategies of United Parcel Services (UPS) and Federal Express. UPS has

adopted a more integrated strategy than Federal Express. A large deferred carrier such as UPS
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should realize greater cost savings from integration.

The test cases clearly indicate the dominance of local transportation costs. This is not surprising

since local transportation consists of many trips made in small vehicles operating on short headways.

In turn, changes in local costs have a large impact on total cost. As expected, large savings in local

transportation costs are realized with integrated routing as a result of higher customer density.

The total savings are greatest in regions of the service network where local transportation costs

account for over 45% of total ground and air network operating costs. These regions typically have

low demand levels and low customer densities. With the rise of e-commerce, the importance of

local distribution to individual customers should increase and the incentive for integrating local

distribution between service levels should increase too.

Additional analysis of test cases suggests that due to the geographic distribution of existing

facilities, merging infrastructure from existing networks to form an integrated network yields cost

savings comparable with designing an entirely new integrated network. Across all test cases, the

largest difference in total cost between integration strategies with existing infrastructure and re-

designing a network is only 0.5% which hardly justifies the cost of relocating or building facilities.

Of course, there are other costs and benefits to integration not considered here that could

impact decisions. Integration gives carriers the ability to move deferred items quickly in response

to routing problems in the ground network (weather, surge in demand, etc.). Further, overhead

costs including administrative costs, sales costs, etc. can be reduced through integration when a

delivery firm can use one office to multiple service levels. However, there may be additional costs

of complexity involved with integration.
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5.1 Model accuracy

As discussed in Section 2, we propose the use of continuum approximations for network design

problems in cases where discrete problems can not be fully formulated due to operating complexity

or problem size. Therefore, in such cases the accuracy of the complete design methodology cannot

be validated with a direct comparison of discrete and continuum formulations. As a result, com-

ponent cost models are validated individually here, and complemented by validation tests from the

literature. Since the input data to planning models are often continuous, tests in the literature

compare the continuum average cost predictions with the average cost produced by discrete opti-

mization models across many samples of data simulated from the continuous data. Vehicle routing

cost formulae have been validated in [16] and [30]. They show that the costs of advanced local

distribution strategies can be approximated well within 5% of those arising from discrete simula-

tions for problems with deterministic and stochastic demand. Costs from hub location decisions

obtained with continuum approximations have also been validated against discrete cost models in

the literature; see [5] and [28]. Long haul operating costs are validated using a discrete formulation

from [33] given a fixed network of terminals. The difficulties encountered when solving large prob-

lem instances highlight the complexity of the discrete formulation. Empty vehicle repositioning

costs are validated with TSP simulations in [13]. Terminal cost approximations are validated in

[31]. In all these cases, errors are substantially less than 5%; often less than 1%. Therefore, we

can conclude that the difference between the optimum cost from our model and the optimum of a

discrete version of the same problem cannot exceed 5% and is likely much smaller.
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6 Conclusions and future work

The proposed methodology can be used to design complex integrated distribution systems with

multiple service levels and multiple transportation modes. We show that the problem can be

reduced to a series of simple subproblems while considering all key costs (facility charges and

vehicle repositioning, as well as transportation and inventory) for distribution that includes multiple

transshipments, peddling tours, and shipment choice. Importantly, although we cannot solve the

problem exactly, we can use the approximation models to make key strategic decisions.

This research addresses significant gaps identified in the continuum approximation literature.

This is helpful since continuum approximation modeling can be a powerful tool used in conjunction

with discrete optimization. The results of continuum approximation can be used to establish

guidelines for network design and routing, as well as to evaluate the merits of various integration

strategies. By first approximating cost savings from integration, one can decide if the magnitude

of the savings warrants more detailed discrete optimization. In addition, results from continuum

approximation can give insights for discrete optimization.

The solution to the continuum optimization problem (COP) provides sufficient detail to de-

termine fleet size and other discrete decision variables. The network design is obtained by parti-

tioning the service region into “round” service regions of approximate size ∆y(x)
−1 and locating

terminals at their centroids. For example, consider one subregion of approximately 16,000 square

miles (roughly the size of Northern Illinois). Under moderately dense demand assumptions (two

customers per square mile requesting two items per customer), the COP results require sixteen

consolidation terminals and one breakbulk terminal to serve the region. Local distribution tours

should make 22 stops per tour on average. This translates to approximately 76 delivery vehicles

assigned to each consolidation terminal. Each consolidation terminal should deliver three truck-

loads of items to the breakbulk terminal. The solution also reveals that the average consolidation
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terminal should be 260 miles from the breakbulk terminal. Assuming a speed of 50 miles per hour,

a vehicle could perform at most two round trip access tours per day. Therefore, three vehicles are

required to serve two consolidation terminals and a total of 24 vehicles would be needed to serve

the 16 consolidation terminals. Similar calculations can be performed for other regions resulting

in design and operational guidelines for the complete service area. These guidelines can then be

used to geographically separate discrete terminal location problems and vehicle and item routing

problems, as shown in [31]. Algorithms to translate continuum approximation outputs into discrete

solutions are developed in [28].

A key value of the continuum approximation method is its flexibility. While the problem

presented in this paper is quite stylized, many extensions can be envisioned that are beyond the

scope of this paper. For example, [31] considers hybrid levels of network integration in which

facilities are shared among service levels and modes, but routing remains separate. Additionally,

one could allow a fraction of express items to fly directly between airports when demand and

distance dictate, see [21]. Issues related to design of the air network are explored in [31].
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Appendix: Notation

Network sets

S Set of service levels, S = {E,D} for express and deferred items.

L Set of distribution levels, L = {0, 1, 2}: local (0), access (1) and long haul (2).

B Set of route directions, B = {i, o} for trips inbound to and outbound from a terminal.

V Set of vehicle types, for simplicity V = {a, t}, for air and truck.

T Set of terminal (node) types, T = {C,B, P,H} for consolidation terminals (C), breakbulk
terminals (B), airports (P ), and main air hub (H)

Demand Parameters

δs(x) spatial customer densities for service level s ∈ S (customers/area)

λs(xo, xi) temporal demand rate from a region of unit area about xo to a region of unit area about
xi for service level s ∈ S (items/area2*time)

λsi (x) trip attraction rate in a region of unit area about x (items/area*time); λ
s
i (x) =

R
x∈A λ

s(x, xi)dx

λso(x) trip generation rate about x (items/area*time); λ
s
o(x) =

R
x∈A λ

s(xo, x)dx

Level of Service Parameters

Hm
l maximum headway length for network m = A,G for a route of type l ∈ L

h̃ restricted operating headway in long haul air network, h̃ = 1 day

Nm
l maximum number of stops for network m = A,G on a route of type l ∈ L

V ml vehicle capacity for network m = A,G for a route of type l ∈ L (items)

ρ maximum airport service radius (distance)

Cost Parameters

cud costs of overcoming distance, for vehicle of type u ∈ V ($/distance)

c
0u
d marginal transportation cost per item, for vehicle of type u ∈ V ($/item*trip)

cuq cost of stopping a vehicle of type u ∈ V at a terminal or customer ($/stop)

cf annualized fixed terminal cost ($/terminal)

c0f terminal handling cost per item ($/item)

ch storage (rent) cost for items ($/item*time)
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Decision functions

∆y(x) density of terminals of type y ∈ T (terminals/area)

hm,bl (x) headway of a route of type l ∈ L for network m = A,G in direction b ∈ B (time)

nm,bl (x) number of stops on a route of type l ∈ L for network m = A,G in direction b ∈ B

vm,bl (x) shipment size per terminal on a route of type l ∈ L for network m = A,G in direction
b ∈ B (items/terminal)

rml (x) average linehaul distance on a route of type l ∈ L for network m = A,G (distance)

ωb(x) fraction of deferred items sent by air for long haul transportation in direction b ∈ B

Auxiliary demand functions

ΛAb (x) directional air network demand, Λ
A
b (x) = λEb (x) + ωb(x)λ

D
b (x), for b = i, o

ΛGb (x) directional ground network demand, Λ
G
b (x) = (1− ωb(x))λ

D
b (x), for b = i, o

ΛmT (x) bidirectional network-specific demand, Λ
m
T (x) =

P
b∈B Λ

m
b (x), for m = A,G

Λb(x) directional demand for combined networks, Λb(x) =
P
m=A,G Λ

m
b (x), for b ∈ B

ΛT (x) bidirectional demand for combined networks, ΛT (x) =
P
b∈B Λb(x)

δ(x) total customer density for combined networks, δ(x) =
P
s∈S δ

s(x)

Coefficients and constants

Constant Π, where it is understood that Π is a function of x.

Π =ΛT (x)

Ã
ct
0
d −

ctdk(δ(x))
− 1
2

V0

!
+ ΛT (x)c

t0
d + Λ

G
o (x)c

t0
d + Λ

A
T (x)

³
ca

0
d + 2chh̃

´
+ Λo(x)ck log(2) + 2ΛT (x)c

0
f

Coefficients for local operating headways:

αb1 = Λbch; b = i, o α2 = c
t
dk(δ)

1
2 + ctqδ

Coefficients for consolidation terminal densities and access operating headways:

β1 = ΛT

Ã
2
3c
t
d

V0
π−

1
2 −

ctdk

V1

!
+

2
3 |Λo − Λi|

V0
π−

1
2 ctd

β2 = c
t
dk β3 = c

t
q βb4 = Λ

A
b

ch
2

βb5 = Λ
G
b ch; b = i, o β6 = cf
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Coefficients for airport densities:

χ1 = Λ
A
T

Ã
2
3c
t
d

V A1
π−

1
2

!
+

2
3 |Λ

A
o − Λ

A
i |

V A1
π−

1
2 ctd χ2 = cf +

X
b∈B

rA2 c
t
d + n

A,b
2 ctq

nA,b2
χ3 =

X
b∈B

nA,b2 − 1

nA,b2
ctdk

Coefficients for breakbulk terminal densities and long haul operating headways:

ψ1 = Λ
G
o

Ã
2
3c
t
d

V G1
π−

1
2

!
+

2
3 |Λ

G
o − Λ

G
i |

V G1
π−

1
2 ctd − Λ̄

Gctd
k

V G2

ψ2 = cf ψ3 = c
t
dk ψ4 = c

t
q ψ5 = Λ

G
o ch
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