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Abstract

The period vehicle routing problem (PVRP) is a variation of the classic vehicle routing

problem in which delivery routes are constructed for a period of time (for example, multiple

days). In this paper, we consider a variation of the PVRP in which service frequency is a

decision of the model. We refer to this problem as the PVRP with service choice (PVRP-SC).

We explore modeling issues that arise when service choice is introduced and suggest efficient

solution methods. Contributions are made both in modeling this new variation of the PVRP and

in introducing an exact solution method for the PVRP-SC. In addition, we propose a heuristic

variation of the exact method to be used for larger problem instances. Computational tests

show that adding service choice can improve system efficiency and customer service. We also

present general insights on the impact of node distribution on the value of service choice.

Introduction

In many supply chains, as well as other pick-up and/or delivery operations, customers often require

repeated visits over a time horizon. Examples can be found in the delivery of groceries (or other

products), the collection of waste, or the distribution of equipment for intermodal operations. In

these examples, one must design routes that consider volume, travel time, and visit frequency. Such

applications motivated the development of the Period Vehicle Routing Problem (PVRP).
∗Department of Industrial Engineering and Management Sciences, Northwestern University
†Department of Industrial Engineering, Tel Aviv University
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The PVRP is a generalization of the classic vehicle routing problem (VRP) in which vehicle

routes are constructed for a t-day period (for example, one week). Other units of time may be

used; however, this paper employs the above convention. Each day within the period, a fleet

of capacitated vehicles performs routes that begin and end at a single depot. Customers are

visited a pre-set number of times over the period with a schedule that is chosen from a menu of

schedule options. Each schedule option represents a set of days on which a node is visited. For

example, if over the period of one week, a node is to be visited twice, the menu options may be

{(Mon, Tues); (Mon,Wed); (Wed,Fri)}. The objective of the PVRP is to find a set of tours for

each vehicle over the period that minimizes total travel time while satisfying operational constraints

(vehicle capacity and visit requirements).

The first problem motivating the PVRP was introduced in Beltrami and Bodin (1974) for

assigning hoist compactor trucks in municipal waste collection. The PVRP was formally defined in

Russell and Igo (1979) as an “Assignment Routing Problem,” and first formulated mathematically in

Christofides and Beasley (1984). Solution methods in these and subsequent papers have focused on

two-stage (construction and improvement) heuristics; see also Tan and Beasley (1984) and Russell

and Gribbin (1991). Chao et al. (1995) review the heuristics proposed in the above papers and

compare these methods with a new heuristic developed to overcome issues of poor local optima.

Gaudioso and Paletta (1992) consider a PVRP model that minimizes fleet size. More recently,

Cordeau et al. (1997) implement a tabu search algorithm for the PVRP. These papers all consider

heuristic methods whose quality is unknown since no optimal solutions or lower bounds are provided.

However, since these papers share common datasets, results are compared across papers.

In the above-mentioned references, each customer is visited with a pre-set frequency. Each node

may be served from a node-specific set of schedule options with a fixed number of visits per week.

However, determining schedule choices for a node independent of routing decisions may lead to

routing inefficiencies.

Newman et al. (2005) consider a scheduling and routing problem in which the schedule and

frequency of visits to customers is a decision variable. The customer’s cost of holding inventory is
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used as an approximation of the willingness to pay for more frequent service. The authors note

that the PVRP literature emphasizes routing costs or fleet size and does not consider inventory

or other costs associated with the selection of a particular day-of-the-week schedule. However, the

model in Newman et al. (2005) assumes that route construction is exogenous; routes are selected

from a given set of routes.

In this paper, we consider a variation of the PVRP which accounts for service choice. This work

was initially motivated by the delivery operations for interlibrary loan items, described in Section

3.1. We define a schedule to be the set of days on which a node is visited. Service to a node is

characterized by the schedule of visits and the associated visit frequency. In particular, we assume

that each customer requires a minimum number of visits per period, but is willing to accept a higher

frequency. The customer and/or the system benefits from higher frequencies, which is accounted

for in the objective function. The benefit from a higher frequency may represent the customer’s

savings in holding cost or, more generally, the customer’s willingness to pay for more frequent

(better) service. Thus, the PVRP with Service Choice (PVRP-SC) exploits possible efficiencies

from combined routing and service decisions. Importantly, due to the service choice, the overall

performance of the system may be enhanced since some nodes may receive better service than

the minimum required. An implicit constraint in our modeling of the PVRP-SC is to maintain a

reasonable set of different routes for each driver to perform.

Like the PVRP-SC, the Inventory Routing Problem (IRP) determines visit frequency and route

configuration simultaneously. In the PVRP-SC, the amount delivered to a node is determined by

the schedule assigned to the node (all demand accumulated since the last visit), while in the IRP

the amount delivered to a node is a decision variable separate from visit frequency. Our modeling

of the PVRP-SC ensures that minimum service requirements are met. The service benefit is related

to the node and depends on a parameter determined by the node’s volume and the chosen service.

On the other hand, in the IRP the service related costs are modeled as holding costs and therefore

are associated with each specific unit of item. Typically, no minimum frequencies are imposed.

As with the vast majority of the inventory literature, the IRP literature may be classified into
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models in continuous time with a constant demand rate over an infinite horizon, and models in

discrete time with a finite horizon and varying demand. In continuous time the visit frequency

is typically modeled as a continuous decision variable which contributes a non-linear term to the

objective function. A variation of an EOQ-type solution is usually suggested to solve for the

replenishment quantity decision variables. Work in this category includes, for example, Anily and

Federgruen (1990), Chan et al. (1998) and the surveys by Federgruen and Simchi-Levi (1995) and

by Anily and Bramel (1998). Kleywegt et al. (2002) provide a classification of recent articles on

both deterministic and stochastic demand IRPs. The IRP literature in discrete time is quite sparse,

and usually considers special cases of the problem or suggests heuristic solutions. See, for example,

Kim and Kim (2000), Gaur and Fisher (2004), and Herer et al. (2003). Since demand in these

models varies from period to period, the solution is typically not repetitive.

In this paper we introduce the PVRP-SC. We consider how service choice impacts the volume

accumulated at a node, as well as the stopping cost. This paper explores modeling issues that

arise when service choice is introduced and suggests efficient solution methods. We highlight the

assumptions which allow for a compact formulation and an exact solution method. Contributions

are made both in the formulation of this new variation of the PVRP and in the introduction of an

exact solution method for the PVRP-SC. In addition, we propose a heuristic variation of the exact

method to be used for larger problem instances.

Section 1 describes the PVRP-SC in detail and presents a mathematical formulation. Section 2

introduces the solution method and Section 3 presents computational results and general insights.

Finally, Section 4 summarizes the paper and discusses future work.

1 Problem description

The PVRP with Service Choice (PVRP-SC) is the problem of finding a set of tours for each vehicle

for each day over a period that minimizes an objective of total travel cost minus service benefit

while satisfying operational constraints (vehicle capacity and visit frequency minima).

The example in Figure 1 illustrates how introducing choice in visit frequency can lead to greater
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Figure 1: Period Vehicle Routing Problem

control over system efficiency. In the figure, a set of nodes is served from a central depot by two

vehicles. Each node is characterized by pre-set visit frequency (either daily, 3-day, or 2-day), and

vehicles are assigned to nodes as shown. Consider nodes 1 and 2 served by the second vehicle. Since

the nodes have different pre-set frequencies, they are visited by different schedules. Vehicle 2 must

travel to the region containing nodes 1 and 2 five days a week, incurring a long travel distance for

each trip. If the pre-set frequencies are treated as lower bounds rather than fixed values, routing

efficiency may increase. Node 2 can be visited with node 1 on a Monday-Wednesday-Friday tour,

thereby reducing the travel distance for vehicle 2.

The increase in efficiency comes with an increase in solution options for an already difficult

combinatorial optimization problem. The PVRP-SC is an extension of the VRP which is shown by

Lenstra and Rinnooy Kan (1981) to be NP-hard. Further, the amount delivered to a node must

reflect the dependence of accumulation on schedule choice. The stopping cost at a node increases

with the amount of material distributed or picked up which is again a direct function of schedule

choice.

The following notation is used to model and formulate the PVRP-SC:

N set of demand nodes; N = {1, ..., n}; node 0 represents the depot
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A set of network arcs; A = {(i, j) : i, j ∈ N ∪ {0}}

K set of vehicles

C vehicle capacity; (items per vehicle)

T set of days T = {1, ..., t}; t represents the length of the period

S set of service schedules; S = {1, ..., |S|}; s ∈ S is a subset of T

asd =


1 if day d ∈ T is in schedule s ∈ S

0 otherwise

tij travel cost on arc (i, j) ∈ A; (dollars)

wi demand at node i ∈ N ; (items per day)1

fi minimum visit frequency at node i ∈ N ; (number of days/period)

γs service frequency for schedule s ∈ S; (number of days)

τ si stopping cost at node i ∈ N when served by schedule s ∈ S (dollars/stop)

αs service benefit for schedule s ∈ S (dollars/item)

βs demand accumulation adjustment factor for schedule s ∈ S

The cost of stopping at a node τ si is a function of the demand at node i and the frequency of

schedule s. We introduce a service benefit αs to provide incentive to offer more frequent service

to nodes. The formulation can be generalized to relate frequency and service benefit through a

volume-related function by defining a parameter αsi to be a function of wi rather than a constant

for all nodes. In this way, various types of benefit structures (e.g., quadratic) may be modeled.

Formulating capacity constraints is more complex in the PVRP-SC than in the PVRP. To

ensure that capacities are not exceeded, one must know the volume delivered to a node. In existing

formulations of the PVRP, it is assumed that the same amount is delivered at each visit to a node,

regardless of the spacing of days in a schedule (which can vary even with fixed service levels). In the

PVRP-SC, the service frequency determines the demand between visits; the adjustment factor βs

is estimated as the maximum number of days between visits on schedule s ∈ S. This conservative

estimate for βs guarantees feasibility, yet may preclude better solutions.

1It is assumed that each item consumes the same amount of capacity.
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We introduce the following decision variables:

ysik =


1 if node i ∈ N is visited by vehicle k ∈ K on schedule s ∈ S

0 otherwise

xdijk =


1 if vehicle k ∈ K traverses the arc (i, j) ∈ A on day d ∈ T

0 otherwise

Since the capacity constraints depend on the specific vehicle and service level at each node, we

define ysik such that nodes are visited by the same vehicle each time. Allowing nodes to be visited

by multiple vehicles would require either a non-linear capacity constraint or a fifth index on the

routing variables for schedule choice. In the motivating example of interlibrary loan delivery, this

definition of ysik is required.

The following formulation for PVRP-SC is an extension in several dimensions of the VRP

formulation in Fisher and Jaikumar (1981):

Z∗ = min
X
k∈K

X
d∈T

X
(i,j)∈A

tijx
d
ijk +

X
s∈S

X
i∈N

(γsτ si − wiα
s) ysik

 (1a)

subject to

X
s∈S

X
k∈K

γsysik ≥ fi ∀i ∈ N (1b)

X
s∈S

X
k∈K

ysik · 1 ∀i ∈ N (1c)

X
s∈S

X
i∈N

(βswi) asdy
s
ik · C ∀k ∈ K; d ∈ T (1d)

X
j∈N∪{0}

xdijk =
X
s∈S

asdy
s
ik ∀i ∈ N ; k ∈ K; d ∈ T (1e)

X
j∈N∪{0}

xdijk =
X

j∈N∪{0}
xdjik ∀i ∈ N∪{0}; k ∈ K; d ∈ T (1f)

X
i,j∈Q

xdijk · |Q| − 1 ∀Q ⊆ N ; k ∈ K; d ∈ T (1g)

ysik ∈ {0, 1} ∀i ∈ N ; k ∈ K; s ∈ S (1h)

xdijk ∈ {0, 1} ∀(i, j) ∈ A; k ∈ K; d ∈ T (1i)
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The objective function (1a) balances travel time and service benefit. The first term represents

arc travel times. The second term represents the node stopping costs and a demand-weighted

service benefit. Setting αs = 0,∀s ∈ S, is equivalent to considering only routing in the objective and

specifying large values of αs solves the problem of maximizing service benefits first, and minimizing

routing costs as a secondary objective.

Constraints (1b) enforce the minimum frequency of visits for each node. Constraints (1c) ensure

that one schedule and one vehicle are chosen for each demand node. Constraints (1d) represent

vehicle capacity constraints. The material distributed to or picked up from a node depends on the

schedule and node demand, and is allocated to specific days using the parameter asd. Constraints

(1e) link the x and y variables for the demand nodes. Constraints (1f) ensure flow conservation

at each node. Constraints (1g) are the subtour elimination constraints and ensure that all tours

contain a visit to the depot. Constraints (1h) and (1i) define the binary variables for assignment

and routing, respectively.

Formulation (1) can be modified to include other operating constraints that also make the

problem more tractable. As mentioned earlier, it may be desirable from an operations perspective

to limit the number of different routes performed by each driver to ensure that solutions can be

implemented easily. Consider the example in Figure 1. The solution offers three discriminating

service levels to nodes (daily service, three times a week, twice a week) while requiring each driver

to perform only two different routes. This example can be generalized to any set of schedules that

satisfies the property introduced in the following lemma.

Lemma 1 Assume that the set of schedules S includes |S|−1 disjoint schedules (schedules do not

share any common days) and a schedule |S| that is the union of all disjoint schedules. Then the set

of nodes served on a route on a certain day included in disjoint schedule s0 is always visited on the

same route each day in schedule s0. This results in at most |S|−1 different routes for each vehicle.

Proof: Let M be a set of nodes visited on a certain day. If there exists no i ∈ M such that i is

assigned to schedule |S| then all nodes i ∈M must be assigned to the same schedule by the disjoint

assumption. Otherwise, denote by M 0 the set of nodes that are assigned to schedule |S|. Nodes in
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M\M 0 are assigned to the same schedule as in the previous case. Now, by definition of schedule

|S|, all nodes in M 0 are visited too whenever nodes in M\M 0 are visited. Thus the set of nodes

visited on this day and all others in the schedule does not change. Given the same set of nodes, the

same vehicle assignments and routing decisions are still optimal. Given |S|−1 disjoint schedules,

there will be at most |S|−1 different routes for each vehicle. 2

Lemma 1 implies that the number of different routes does not depend on t. With sets of

schedules defined as in Lemma 1, the number of routing variables (xdijk) can be reduced. Let U be

the set of disjoint schedules {1, ..., |S|−1}. Rather than defining xdijk over all days, the variables

are defined by unique delivery days, xuijk; u ∈ U . In the example in Figure 1, u = 1 corresponds to

a Mon-Wed-Fri schedule that is performed three times a week (γ1 = 3) and u = 2 corresponds to a

Tue-Thurs schedule that is performed twice a week (γ2 = 2). Hence γs can also be indexed by u. If

the union of the disjoint sets were not included in the schedule options, there would be no need to

differentiate between u and s in the formulation. With the union included, the indices on asd and

xdijk are changed from d to u rather than introducing new parameters for simplicity of notation.

The units remain the same (days) although the dimensions over which the parameters/variables

are indexed have changed. The parameter asu is defined as:

asu =



1 for s = u; s ∈ S, u ∈ U

1 for s = |S|;u ∈ U

0 for s 6= u; s ∈ S \ {|S|}, u ∈ U

(2)

The PVRP-SC is now formulated as follows:
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Z∗ = min
X
k∈K

X
u∈U

X
(i,j)∈A

γutijx
u
ijk +

X
s∈S

X
i∈N

(γsτ si − wiα
s) ysik

 (3a)

subject to

X
s∈S

X
k∈K

γsysik ≥ fi ∀i ∈ N (3b)

X
s∈S

X
k∈K

ysik · 1 ∀i ∈ N (3c)

X
s∈S

X
i∈N

(βswi) asuy
s
ik · C ∀k ∈ K;u ∈ U (3d)

X
j∈N∪{0}

xuijk =
X
s∈S

asuy
s
ik ∀i ∈ N ; k ∈ K;u ∈ U (3e)

X
j∈N∪{0}

xuijk =
X

j∈N∪{0}
xujik ∀i ∈ N ∪ {0}; k ∈ K;u ∈ U (3f)

X
i,j∈Q

xuijk · |Q|−1 ∀Q ⊆ N ; k ∈ K;u ∈ U (3g)

ysik ∈ {0, 1} ∀i ∈ N ; k ∈ K; s ∈ S (3h)

xuijk ∈ {0, 1} ∀(i, j) ∈ A; k ∈ K;u ∈ U (3i)

Note that the routing component in (3a) is multiplied by γu to reflect the full cost of routing

throughout the time period. Formulation (3) allows consistent tours for drivers and easier system

management. Further, each node that is visited by a disjoint schedule is visited by the same vehicle

at the same time each day. This variation is adopted throughout the remainder of the paper.

2 Solution methods

Section 2.1 provides an overview of the solution algorithm. The first component is a Lagrangian

relaxation of (3), in which two subproblems are created by relaxing one constraint of the original

problem. Critical to the Lagrangian procedure are the initial lower and upper bounds, and the

methods used to update the bounds, described in Section 2.2 for the lower bounds and Section

2.3 for the upper bounds. If the lower and upper bounds converge to identical values, the optimal
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solution is reached and the algorithm terminates. Otherwise, the branch and bound component is

implemented to close the gap, as described in Section 2.4. The branch and bound procedure uses

information from the Lagrangian relaxation to improve performance. With slight variations to this

exact algorithm, we design a heuristic algorithm for large problem instances, which is described in

Section 2.5. While our algorithm includes computations typically employed in such algorithms, we

enhance those computations that are specific to the PVRP-SC and are developed in this research.

The details of these developments are described in this section according to the outline above.

2.1 Description of the Lagrangian relaxation

By relaxing constraints (3e) the assignment decisions (y-variables) are completely separated from

the routing decisions (x-variables). The two resulting subproblems are solved independently and

the relaxed constraints incorporated in a Lagrangian fashion. We introduce Lagrange multipliers

λuik for i ∈ N, k ∈ K, and u ∈ U , associated with the relaxed constraints (3e), and define λ
u
0k = 0

since constraints (3e) are not defined for i = 0. We obtain the following Lagrangian function:

LR (λ) =
X
k∈K

X
u∈U

X
(i,j)∈A

γutijx
u
ijk +

X
s∈S

X
i∈N

(γsτ si − wiα
s) ysik


+
X
u∈U

X
k∈K

X
i∈N

λuik

 X
j∈N∪{0}

xuijk −
X
s∈S

asuy
s
ik


=
X
k∈K

X
u∈U

X
(i,j)∈A

(γutij + λuik)x
u
ijk+

X
k∈K

X
s∈S

X
i∈N

(γsτ si − wiα
s) ysik−

X
k∈K

X
u∈U

X
i∈N

X
s∈S

λuikasuy
s
ik

(4)

For a given λ vector, we define:

Zλ (x, y) = min
x,y

LR (λ)

subject to (3b) - (3d), (3f)-(3i)

The solutions to the following two independent subproblems provide the x and y values that

minimize the Lagrangian function. The assignment subproblem determines the y values:
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Zλ (y) = min
X
k∈K

X
s∈S

X
i∈N

(γsτ si − wiα
s) ysik −

X
k∈K

X
u∈U

X
i∈N

λuik

ÃX
s∈S

asuy
s
ik

!
(5a)

subject to

X
s∈S

X
k∈K

γsysik ≥ fi ∀i ∈ N (5b)

X
s∈S

X
k∈K

ysik · 1 ∀i ∈ N (5c)

X
s∈S

X
i∈N

(βswi) asuy
s
ik · C ∀k ∈ K;u ∈ U (5d)

ysik ∈ {0, 1} ∀i ∈ N ; k ∈ K; s ∈ S (5e)

The routing subproblem determines the x values:

Zλ (x) = min
X
k∈K

X
u∈U

X
(i,j)∈A

(γutij + λuik)x
u
ijk (6a)

subject to

X
j∈N∪{0}

xuijk =
X

j∈N∪{0}
xujik ∀i ∈ N ∪ {0}; k ∈ K;u ∈ U (6b)

X
i,j∈Q

xuijk · |Q| − 1 ∀Q ⊆ N ; k ∈ K;u ∈ U (6c)

xuijk ∈ {0, 1} ∀(i, j) ∈ A; k ∈ K;u ∈ U (6d)

The routing subproblem decomposes by (k, u) pairs for each vehicle / delivery day combination,

resulting in |K| · |U | instances of the following subproblem, in which k and u are given:
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Zλ
¡
x(k,u)

¢
= min

X
(i,j)∈A

(γutij + λuik)x
u
ijk (7a)

subject to

X
j∈N∪{0}

xuijk =
X

j∈N∪{0}
xujik ∀i ∈ N ∪ {0} (7b)

X
i,j∈Q

xuijk · |Q| − 1 ∀Q ⊆ N (7c)

xuijk ∈ {0, 1} ∀(i, j) ∈ A (7d)

For each λ ∈ <n+|K|+|U |, it follows that:

Zλ (x, y) = Zλ (x) + Zλ (y) =
P
(k,u) Zλ

¡
x(k,u)

¢
+ Zλ (y) and Zλ (x, y) · Z∗.

Each resulting subproblem is a difficult problem by itself. In the assignment subproblem, a

schedule and a vehicle must be assigned to each node such that frequency and capacity constraints

are satisfied. The frequency constraints are easy to satisfy and the best feasible schedule for

each node may be chosen according to the node’s coefficient. While the capacity constraint is

a “knapsack” type of constraint which is theoretically difficult, the assignment problems can be

solved to optimality with CPLEX in seconds.

The (k, u) routing subproblem is known in the literature as a version of the Traveling Salesman

Problem with Profits (TSP with Profits), in which a profit is associated with each node and it is

not necessary to visit all nodes. The objective is to find a route with maximum profit and minimum

travel cost. In some versions, one objective is optimized subject to constraints on the value of the

other objective; in other versions, both objectives are weighted, as in our case. The problem can

also be modeled as the Orienteering problem, or the Prize Collecting TSP, see Feillet et al. (2003)

for a survey and classification of the TSP with Profits. Feillet et al. (2003) also prove formally

that the TSP with Profits is NP-hard. Since the problem is solved for every (k, u) pair at each

Lagrangian iteration, investing the time to solve (7) optimally is not realistic. Alternatively, lower

and upper bounds may be embedded within the Lagrangian iterations, see Sections 2.2 and 2.3,

respectively.

After each iteration of the Lagrangian algorithm, the Lagrange multipliers are updated accord-
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ing to a standard subgradient optimization procedure, see Fisher (1981) and Fisher (1985).

2.2 Lower bounds

The subgradient optimization procedure for updating the Lagrange multipliers requires an initial

lower bound for the problem. One simple lower bound is represented by the following formula:

X
i∈N

fi

µ
min
j∈J

tij

¶
+
X
i∈N

³
γs̄(i)τ

s̄(i)
i − wiα

ŝ
´
.

where s̄(i) is the schedule that satisfies γs̄(i)τ
s̄(i)
i = mins∈S{γsτ si } for node i and ŝ is the schedule

that satisfies ŝ = maxs∈S{αs}.

An alternative lower bound may be found by computing the routing term based on a Minimum

Spanning Tree (MST) method, which constructs an MST through all the nodes. The nodes are

assumed to be visited at the (same) lowest possible frequency, with stopping costs and service

benefit determined as above. Let CMST be the cost of the MST. This lower bound is given by:µ
min
i∈N

fi

¶
CMST +

X
i∈N

³
γs̄(i)τ

s̄(i)
i − wiα

ŝ
´
.

The lower bound is updated at each iteration of the Lagrangian algorithm by solving the

subproblems for the given Lagrange multiplier values. Ideally, optimal solutions would be found

for each subproblem; however, this is not realistic for the routing subproblem. Therefore, we set

the iteration’s lower bound as the sum of the optimal solution to the assignment problem and the

lower bounds on the routing subproblems.

The difficulty in solving the routing subproblem is due to the exponential number of subtour

elimination constraints (7c). Typically, only some of those constraints are needed; however, the spe-

cific constraints required are not known in advance. Therefore, the following approach is adopted.

Initially, all subtour elimination constraints are relaxed. If subtours exist in the resulting solution,

the associated subtour elimination constraints are added to the formulation, and the problem is

re-solved (with CPLEX). This is repeated until either a feasible solution is obtained or some stop-

ping rule applies. In the first (second) case the solution is optimal (a lower bound) for the routing

subproblem and in both cases the objective value is a lower bound on the routing component of the
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original objective value. We use a pre-determined time budget as a stopping rule for the routing

subproblem. See Section 2.5 for a discussion on this choice. When a time budget is used, the

following cut is added for every (k, u) routing subproblem (7) to ensure that the depot is included

in the routes:

X
j∈N∪{0}

xuijk ·
X
j∈N

xu0jk ∀i ∈ N (7e)

Let LBλ(x) be a lower bound on Zλ(x) and let LBλ(x(k,u)) be a lower bound on Zλ(x(k,u)) for

a given λ. We obtain:

Zλ(y) +
X
(k,u)

LBλ(x(k,u)) = Zλ(y) + LBλ(x) · Zλ(y) + Zλ(x) = Zλ(x, y) · Z
∗

2.3 Upper bounds

Upper bounds are used in various phases of the algorithm. At the end of the algorithm, the best

feasible upper bound represents the suggested solution, whether it is a provably optimal solution

or a heuristic solution. The capacity constraint makes the feasibility problem hard, particularly

when searching for an initial upper bound, and especially if the capacity constraint is tight.

Recall that the objective function (3a) consists of total time (travel plus stopping) to perform

all routes during the period
P
k∈K

hP
u∈U

P
(i,j)∈A γ

utijx
u
ijk +

P
s∈S

P
i∈N γsτ si y

s
ik

i
and demand

weighted service factor for all nodes
P
k∈K

£P
s∈S

P
i∈N (−wiα

s) ysik
¤
. Each component can be

bounded from above. An upper bound on the first component is based on the assessment that,

in practice, each vehicle has a limited time Γ to perform its tour, even if not explicitly expressed

by the constraints. (See Section 4 for a discussion of the implications of such a constraint.) An

upper bound on the total time traveled during the period by all vehicles is given by |K| · t · Γ (the

parameter Γ may be chosen somewhat loosely if its value is not known explicitly). The second

component is bounded by −
P
i∈N wiα

s0 where s0 is the schedule that satisfies: αs0 =mins∈S{αs}.

Therefore, the upper bound on the objective function is given by: |K| · t · Γ−
P
i∈N wiα

s0 .

The initial upper bound serves in the subgradient optimization step that updates the initial

Lagrange multipliers. In each subsequent iteration of the LR algorithm, we attempt to improve
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the upper bound. Given the assignment decisions from solving (5), we search for feasible vehicle

routings for these assignments using a randomized saving heuristic for the VRP problem from

Clarke and Wright (1964), described in the Appendix. Since the assignment decisions are feasible,

the heuristic solution is guaranteed to be feasible as well. This solution value may update the best

known upper bound. This method can also be used to find an initial upper bound if Γ is not known.

Upper bounds may also be obtained from solutions to the routing subproblem. Two feasibility

issues must be addressed with solutions to (7). First, the routing solutions must not contain

subtours. Second, the assignment and routing decisions must satisfy the relaxed constraints (3e).

Therefore, in each iteration in which the solutions to (7) do not contain any subtours, we fix the

assignment variables using linking constraints (3e). We then check the capacity and frequency

constraints. If the solution is feasible, it may update the upper bound.

2.4 Closing the gap: the branch and bound procedure

At the conclusion of the Lagrangian Relaxation phase, the solution that corresponds to the best

known upper bound is a candidate solution to the problem. If the upper bound does not equal the

lower bound, the remaining gap is closed with branch and bound. Typically, branch and bound

is not a preferred method for hard combinatorial problems like the PVRP-SC, since significant

computational effort and time are required. While this is still a valid concern, there are two factors

that facilitate the branch and bound procedure. First, the upper bound from the LR phase is likely

to be relatively close to the optimal solution, certainly much closer than the initial upper bound.

This claim is supported with empirical evidence in Section 3. As a result, significant parts of the

branch and bound tree are likely to be truncated. Second, solutions to the subproblems from the

Lagrangian phase eliminate the need for repetitive computation and provide useful information in

guiding the branch and bound algorithm, as explained below.

Due to the large number of routing variables, the branch and bound procedure enumerates

the assignment variables only. The routing variables are determined subsequently through the

solution to the routing subproblem, either optimally or via a lower bound. A key observation here
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is that, given a partition of nodes into routes, the vehicle index assigned to each route is arbitrary.

Therefore, in branching over the assignment decisions, an aggregate decision variable is introduced,

zsi =
P
k∈K y

s
ik, which equals 1 if node i is assigned to schedule s and 0 otherwise. This limits the

number of variables over which branching is performed.

The branching order is an important decision. When setting the value of a variable to either

zero or one, better feasible solutions are likely if the variable is set to its “correct” value, that is,

its value in the optimal solution. This is of particular importance in a depth-first traversal of the

branch and bound tree, where variables considered early in the branching order retain their values

for a long time. Hence, it is important to branch first on those variables with values which can be

speculated with greater confidence.

In particular, the frequency with which the value of each y−variable is 1 in a feasible solution

to the whole problem is recorded in the Lagrangian phase. From the frequency of the y−variables

we derive the frequency of the z−variables to determine the branching order. Recall that the

subproblems are solved in each iteration, each time for a different set of Lagrange multipliers;

therefore, a large number of y−variable solutions are used in this statistic.

At each node, an attempt is made to find a good feasible solution using the randomized sav-

ings heuristic described in the Appendix. A lower bound for each node is obtained by solving two

subproblems similar to subproblems (5) and (7) used in the Lagrangian, except that additional

constraints are imposed by the fixed z-variables. We introduce additional notation for these sub-

problems. Let L1 be the set of all pairs of indices (i, s) that have been fixed at the current node

by assignments of zsi = 1 (including those assignments at preceding nodes in the depth-first tra-

versal of the branch and bound tree). Similarly, let L0 be the set of pairs of indices (i, s) fixed by

assignments of zsi = 0.

The y−subproblem at a given node of the tree is:

min
X
s∈S

X
k∈K

X
i∈N

(γsτ si − wiα
s) ysik (8a)
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subject to

X
s∈S

X
k∈K

γsysik ≥ fi ∀i ∈ N (8b)

X
s∈S

X
k∈K

ysik · 1 ∀i ∈ N (8c)

X
s∈S

X
i∈N

(βswi) asuy
s
ik · C ∀k ∈ K;u ∈ U (8d)

X
k∈K

ysik = z
s
i ∀(i, s) ∈ L0 ∪ L1 (8e)

ysik ∈ {0, 1} ∀i ∈ N ; k ∈ K; s ∈ S (8f)

Constraints (8b), (8c), (8d), and (8f) are identical to those in (5). Constraints (8e) are added

for all (i, s) combinations whose z-value is fixed.

The x− subproblem at a given node of the tree is:

min
X
k∈K

X
u∈U

X
(i,j)∈A

γutijx
u
ijk (9a)

subject to

X
j∈N∪{0}

xuijk =
X

j∈N∪{0}
xujik ∀i ∈ N ∪ {0}; k ∈ K;u ∈ U (9b)

X
i,j∈Q

xuijk · |Q|−1 ∀Q ⊆ N ; k ∈ K;u ∈ U (9c)

X
k∈K

X
j∈N∪{0}

xuijk ≥ asuz
s
i ∀(i, s) ∈ L1, u ∈ U (9d)

xuijk ∈ {0, 1} ∀(i, j) ∈ A; k ∈ K;u ∈ U (9e)

Constraints (9b) and (9c) are the flow-balance and subtour elimination constraints, respectively.

Constraints (9d) ensure that at least one vehicle is routed to node i, if i has a fixed schedule choice

s, for every unique delivery day u such that asu = 1. This constraint will never result in choosing

more than one vehicle since we are minimizing (9a). Note that this formulation decomposes by u,

but not by k.

The following lemmas show that the sum of the objective values of subproblems (8) and (9)

constitutes a lower bound at the node.
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Lemma 2 Given the fixed z values at a given node in the branch and bound tree, the solution to

(9a)-(9e) is a lower bound on the routing cost
P
k∈K

P
u∈U

P
(i,j)∈A γ

utijx
u
ijk corresponding to the

optimal solution of (3) with additional constraints on the x and y values imposed by the fixed z

values.

Proof: Consider formulation (3) with additional constraints fixing x and y to match the fixed z

values. Constraints equivalent to (3b)-(3d) and (3h) do not appear in (9a)-(9e); and constraints

(9b), (9c) and (9e) are identical to (3f), (3g) and (3i) respectively. Therefore, it remains to show

that constraints (9d) are relaxations of (3e). Recall that constraints (3e) are:

X
j∈N∪{0}

xuijk =
X
s∈S

asuy
s
ik ∀i ∈ N ; k ∈ K;u ∈ U

Weaker constraints are derived by summing over all vehicles:

X
k∈K

X
j∈N∪{0}

xuijk =
X
s∈S

asu
X
k∈K

ysik ∀i ∈ N ;u ∈ U

Using the definition of zsi =
P
k∈K y

s
ik, we have:

X
k∈K

X
j∈N∪{0}

xuijk =
X
s∈S

asuz
s
i ∀i ∈ N ;u ∈ U

Equivalently, we can exclude from the summation on the right-hand side any schedule s for which

zsi /∈ L1 since minimizing (3) will set to 1 only those x values which are forced to 1 by (3e). We

rewrite the constraints as follows:

X
k∈K

X
j∈N∪{0}

xuijk =
X

s∈S:(i,s)∈L1
asuz

s
i ∀i ∈ N ;u ∈ U

Since only one schedule can be chosen for a node, we have:

X
k∈K

X
j∈N∪{0}

xuijk = asuz
s
i ∀(i, s) ∈ L1;u ∈ U

Constraints (9d) are relaxations of the above, which have been shown to be a relaxation of (3e).

Hence, all constraints of (3) are either equivalent or relaxed in (9a)-(9e), and the objective function

is a lower bound on the optimal routing cost. 2
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Given the fixed z values, it is possible to strengthen the lower bound obtained from (9a)-(9e)

with additional cuts. Let L∗0 be a subset of L0 containing (i, s) pairs such that zsi = 0 for some

s ∈ S \ {|S|} and visiting on schedule |S| has been ruled out for these nodes. Thus, node i is

excluded from the corresponding unique delivery days. Note by definition that (i, |S|) can never be

in L∗0. Formally, we have:

L∗0 = {(i, s) ∈ L0 : s ∈ S\{|S|}, i : {(i, |S|) ∈ L0}}

Constraints similar to (9d) set to 0 specific routing variables corresponding to unique delivery days

that have been ruled out by fixed z values as follows:

X
k∈K

X
j∈N∪{0}

xuijk · asuz
s
i ∀(i, s) ∈ L∗0, u ∈ {u : (i, s) ∈ L

∗
0, asu = 1} (9f)

These cuts are weaker than constraints (3e). This can be demonstrated in a manner similar to the

discussion of constraints (9d) in the proof of Lemma 2.

The following constraints ensure that all nodes are included in some route:

X
u∈U

X
k∈K

X
j∈N∪{0}

xuijk ≥ 1 ∀i ∈ N (9g)

Again, (9g) is weaker than (3e) since it is equivalent to the constraints obtained by summing (3e)

over all vehicles k and delivery days u. With (9g) added, the problem can no longer be decomposed

by unique delivery day u ∈ U .

Constraints can be added to guide the routing subproblem towards capacity-feasible routes:

X
i∈N

X
j∈N∪{0}

β̂ui wix
u
ijk − C

X
j∈N

xu0jk · 0 ∀k ∈ K,u ∈ U (9h)

where β̂ui is a demand accumulation factor used to adjust the demand accumulated at each served

node according to the chosen level of service. We define:

β̂ui =

 βs if asu = 1, and either z
s
i = 1, s ∈ S or z

|S|
i = 0, s ∈ S\{|S|}

β|S| otherwise

If a particular node i has been assigned to a specific schedule (i.e., zsi = 1), then the demand

accumulation adjustment βs corresponding to the schedule s is used. Note from (2) that for a
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given delivery day u, only one s can satisfy asu = 1, s ∈ S\{|S|}. Otherwise, the least possible

accumulation, corresponding to |S|, is used. Constraints (9h) become stronger with greater depth

of traversal down the tree, ensuring capacity feasible routes at the leaves. Constraints (9h) ensure

that the depot is included in all routes, even if all subtour elimination constraints are not added.

Lemma 3 Given the fixed z values at a given node in the branch and bound tree, the solution to

(9a)-(9h) is a lower bound on the routing cost
P
k∈K

P
u∈U

P
(i,j)∈A γ

utijx
u
ijk corresponding to the

optimal solution of (3) with additional constraints on the x and y values imposed by the fixed z

values.

Proof: The constraints (9f)-(9h) have been shown to be either equivalent to or weaker than con-

straints (3e). Hence, the additionally constrained problem is still a lower bound. 2

If the sum of the objective values of (8) and (9) is larger than the best known upper bound, the

entire sub-tree emanating from that node is truncated. As in the Lagrangian phase, the assignment

subproblem is solved optimally, while the routing subproblem may terminate with a lower bound

rather than an optimal solution. Note, however, that further down the branch and bound tree,

more z-variables become fixed, and both subproblems become more restricted.

When reaching a node which is a leaf of the tree, the time limit is removed to find the optimal

solution of the routing subproblem. This is necessary to guarantee the optimality of the resulting

solution at the end of branch and bound. Fortunately, at the leaf of the tree all z-variables are

fixed; therefore, the routing subproblem with the added set of aggregated constraints includes many

cuts. Hence fewer additional cuts must be added after initially solving the relaxed subproblem.

2.5 A related heuristic approach

For small and medium problem instances, the combination of the Lagrangian and branch and

bound algorithms yields an optimal solution in a reasonable amount of time, as shown in Section

3. Yet, the PVRP-SC is a complex combinatorial problem, which is a generalization of several

other NP-hard problems such as the TSP and the VRP. It is not realistic to expect that arbitrarily
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large instances may be solved to optimality. In this section, the exact approach is modified to

provide good heuristic solutions that apply most of the useful elements described in the previous

sub-sections.

As expected, the routing subproblems are the major bottlenecks in the solution method. To

reduce solution times, routing subproblems in the Lagrangian phase are not necessarily solved

to optimality. The magnitude of deviation from optimality can be controlled through the “time

budget” stopping rule discussed in Section 2.2. With a larger budget, more cuts are likely to

be found which could improve the solution. When performing the upper bound heuristic to find

a feasible solution, it may be desirable to limit the time spent on each iteration. This must be

balanced with the resulting reduction in solution quality. Similar considerations arise in the branch

and bound phase, in which both the relaxation and the heuristic are performed. The time spent at

the leaves could be restricted too. The total solution time may be controlled by limiting the use of

the upper bound heuristic to a subset of Lagrangian iterations and/or branch and bound nodes.

The extent to which each of the above control parameters may be used is an algorithmic design

issue. These choices depend on the problem instance size and the amount of time available to search

for a solution. Roughly speaking, the more time spent on finding good feasible solutions, the better

the quality of the solution will be. However, it is also important to develop a good understanding

of where it is most useful to spend the available time. In Section 3.1, we illustrate the effect of

controlling the amount of time per iteration on solution quality.

Finally, we may choose to terminate the branch and bound algorithm with a solution within

some δ percentage of the optimal value. In this case, a node is fathomed if the lower bound at the

node is greater than (1− δ) of the upper bound.

3 Numerical study

In this section, we examine the impact of service choice on period vehicle routing problems and the

effectiveness and robustness of the solution method for the PVRP-SC. Two datasets are included

in this study. The first set, described in Section 3.1, is drawn from the application that motivated
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the development of the PVRP-SC and the second set, described in Section 3.2, is taken from the

PVRP literature. Section 3.3 presents insights on the impact of service choice on operations.

The solution algorithm is implemented using C with the CPLEX Callable Library Interface and

the CPLEX 8.1 solver, running on a Sun Fire v250 1.28-GHz UltraSPARC IIIi computer with two

processors. The subproblems are modeled as described in Section 2. For larger problem instances,

constraints (9g) are not included due to computational limitations.

3.1 Motivating problem

The North Suburban Library System (NSLS) is a state-funded library system that delivers inter-

library loan items (books, video cassettes, etc.) to its member libraries in the suburbs north of

Chicago. The fifty public libraries served by NSLS account for 89% of the total demand. These

libraries, along with information on their daily volume of loan items, are shown in Figure 2. Four

vans operate from a sorting facility (the depot) and visit the libraries to pick up outgoing items and

deliver incoming items. At the end of the work day, the items that have been picked up are sorted

at the depot for delivery to their destination libraries when they are next visited. NSLS would

like to provide the greatest possible visit frequency to its members. However, due to budgetary

restrictions and rising demand for service from libraries, NSLS may reduce frequencies and design

routes in a way that takes into account routing efficiency as well as the demand of the libraries.

3.1.1 Solution method performance

We examine the sensitivity of the solution method to the structure of problem instances. We

construct subsets of nodes randomly drawn from the 50 public libraries, ranging in size from

12 to 44 nodes. Each subset is tested with 3 and 4 vehicles, and capacities at an additional

10%, 20%, 30% and 40% above the base capacity, which is adjusted by the number of nodes.

Figure 3 depicts the three options for implementation of the solution method: terminating after

Lagrangian Relaxation (LR); continuing with exact branch and bound (B&B); and continuing with

heuristic branch and bound. Lagrangian Relaxation finishes with a gap, G1, between the feasible

solution, ZLR, and the final lower bound, LBLR. In the exact variation, branch and bound runs
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demand > 150 items
75 < demand < 150

demand < 75 items

depot

Lake Michigan

Figure 2: Geographic distribution of libraries in NSLS service

until an optimal solution is found; in the heuristic variation, branch and bound runs until a solution

within δ% of the optimal is found. While it is preferable to use one of these two options, this may

not be realistic for large instances. We use small to medium size instances that can be solved to

optimality (or δ-optimality) to estimate the gap that can be expected from the Lagrangian solution

for larger instances. If the exact solution is available, the quality of ZLR is assessed relative to Z∗

with G∗2. If a solution with δ-optimality is available, the quality of ZLR is assessed relative to a

lower bound on the optimal solution, LBδ = Zδ/(1 + δ), with a gap Gδ
2.

The performance metrics G1 and G
∗
2 are used to analyze the Lagrangian solutions for the NSLS

test cases, shown in Table 1. Each test case is represented by one cell. The top value in the cell is

G1 and the bottom value is G∗2. Cells without G∗2 values indicate that branch and bound did not

terminate within the 8 hour limit.

Three clear trends emerge when evaluating the quality of ZLR with G1. First, the average gap

usually increases with the number of nodes; with both 3 and 4 vehicles, the value of G1 for 44

nodes is 2-3 times the value for 12 nodes. With more nodes, the routing subproblems (7) are more
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Lagrangian Relaxation Phase
• feasible solution, ZLR

• lower bound, LBLR
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Figure 3: Solution approach

difficult to solve within the time budget which results in weaker lower bounds. If the solutions to

(7) contain subtours, corresponding upper bounds cannot be obtained, and feasible solutions do not

improve. Second, the average gap decreases with additional capacity. More capacity increases the

likelihood of finding feasible solutions to update upper bounds. Finally, the average gap decreases

with the number of vehicles. The number of vehicles impacts the flexibility of the system to service

the nodes (the formulation of the PVRP-SC does not include a fixed vehicle cost).

These trends are less clear when evaluating the quality of ZLR relative to the optimal solution

with the values of G∗2. This is to be expected since the above trends impact both upper and lower

bounds in the LR phase. In general, the LR solution is within 10% of the optimal solution with

relatively large variations among the instances. The number of nodes impacts which test cases can

be solved to optimality. The exact branch and bound method cannot be completed within 8 hours

for some cases over 36 nodes. For these cases, Table 2 presents the values of Gδ
2 with δ = 0.02.

The other cases are not shown, although all cases are solved with the heuristic method as well. By

definition, the difference between Z∗ and Zδ is bounded by 2%, and the average difference observed

over all test cases is 1.8%. The average difference between G∗2 and Gδ
2 for the cases not shown is

0.2%, and never more than 1%. Table 2 indicates that for larger problem instances, the Lagrangian

solutions may be as much as 22% from optimality. As discussed next, the advantage of the LR
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(a) Problem Instances with 4 vehicles (b) Problem Instances with 3 vehicles

|N|        Additional capacity Averages |N|        Additional capacity Averages
10% 20% 30% 40% 10% 20% 30% 40%

12 13.8% 13.8% 8.1% 9.6% 11.3% 12 17.9% 16.9% 11.2% 10.7% 14.2%
3.6% 4.4% 4.8% 7.3% 5.0% 9.1% 2.6% 10.2% 7.3% 7.3%

16 15.7% 15.6% 11.8% 10.7% 13.5% 16 19.3% 18.0% 12.5% 10.7% 15.1%
2.3% 14.8% 11.8% 1.9% 7.7% 15.7% 4.9% 4.8% 10.1% 8.9%

20 22.2% 22.1% 16.0% 14.7% 18.7% 20 26.7% 25.0% 16.3% 19.5% 21.9%
3.6% 6.5% 3.2% 14.7% 7.0% 5.9% 9.4% 14.7% 2.7% 8.2%

28 29.3% 28.5% 19.9% 15.9% 23.4% 28 35.1% 30.5% 21.8% 24.4% 27.9%
22.7% 2.8% 5.4% 8.8% 9.9% 27.9% 14.3% 5.3% 4.0% 12.9%

36 26.4% 23.9% 16.4% 16.3% 20.7% 36 31.4% 31.4% 20.1% 17.9% 25.2%
7.0% 20.4% 5.9% 11.4% 11.2% 10.1% 24.0% 2.3% 9.8% 11.6%

40 34.6% 32.7% 23.0% 15.7% 26.5% 40 45.6% 44.2% 26.6% 19.4% 33.9%
16.4% 5.9% 7.8% 3.6% 8.4% 15.2% 18.4% 16.8%

44 36.4% 36.1% 30.8% 23.2% 31.6% 44 39.3% 39.2% 32.4% 29.8% 35.2%
21.2% 11.8% 5.3% 12.8% 4.7% 4.7%

Averages 25.5% 24.7% 18.0% 15.2% 20.8% Averages 30.8% 29.3% 20.1% 18.9% 24.8%
10.9% 9.2% 7.3% 7.6% 8.7% 13.8% 11.0% 8.8% 8.2% 10.4%

Legend:
G1 =(ZLR

 - LBLR)/LBLR Note: test cases without values for G2
* could not be solved with the exact Branch and Bound.

G2
*
 =(ZLR

 - Z
*)/Z*

Table 1: NSLS dataset results: exact solution method

(a) Problem Instances with 4 vehicles (b) Problem Instances with 3 vehicles

|N|        Additional capacity |N|        Additional capacity
10% 20% 30% 40% 10% 20% 30% 40%

44 7.2% 40 22.0% 10.6%
44 15.9% 14.4% 16.0%

Legend:
G2

δ
 =(ZLR - LBδ)/LBδ

LBδ=Zδ/(1+δ)

Table 2: NSLS dataset result: heuristic solution method

phase is its speed.

Figure 4 presents the solution times for the LR phase and the exact and heuristic B&B phases.

Each data point represents the average of all test cases of that size. Solution times are also presented

for the B&B phase without running the LR phase first. In this case, we begin with the initial upper

bound, and branch in increasing order of variable indices. Results could not be obtained with

B&B within the time limit for test cases of 28 or more nodes without the LR phase. With the

two-phase approach, the LR phase significantly reduces the gap before performing B&B. Further,

the branching scheme in B&B benefits from results of the LR phase. These factors explain the

26



dramatic differences in solution times.
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Figure 4: Comparison of time spent (average over multiple test cases)

As expected, using the heuristic version of the B&B phase requires less computational time

than the exact version and, by definition, the corresponding difference in the solution is bounded

by 2%. This variation is capable of solving test cases with more nodes than the exact approach.

Recall that solution times for the routing subproblems in the LR and B&B phases can be

controlled by a time budget. We impose a maximum limit of 300 CPU seconds for each subproblem

in both phases. This limit is determined empirically to allow a majority of the subproblem iterations

to run to completion, while terminating more difficult subproblem iterations at the end of the time

limit. As a result, the LR and B&B phases finish in a reasonable amount of total time. With a

budget of 300 CPU seconds, for the larger test cases (≥ 40 node), 20% of the routing subproblems

are truncated by the time-budget before all necessary subtour elimination cuts are added and

the upper bound heuristic cannot be applied at those iterations. With a 50 CPU-second time-

budget, 76% of the routing subproblems for these test cases are truncated. As a result, the average
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remaining gaps after LR rise by about 14%. With a 500 CPU-second time budget, 20% of the

routing subproblems are truncated which is the same fraction obtained with 300 CPU-seconds.

However, the average solution time rises by a minimum of 36% for all test cases.

3.1.2 Impact of service choice

Currently, NSLS serves the fifty public libraries daily, including libraries in remote regions with low

demand, as shown in Figure 2. Libraries are allocated to routes in an ad hoc manner as demands

increase and driver hours change. The sequencing of visits within a route is left to the discretion

of the driver. We compare the following three delivery options relative to the current operations.

1. Maintain daily visits to all libraries and optimize routes

2. Reduce visit frequency based on demand volumes and optimize routes

3. Determine visit frequency based on demand, routing efficiency and service benefit and opti-

mize routes

Option 1 is modeled as a VRP, whose solution is repeated every day of the week. For options

2 and 3, libraries may be served by one of the following schedules: {(Mon,Wed, Fri); (Tue, Thr);

daily}. This set satisfies the condition of Lemma 1. The visit frequency assigned to each library

for option 2 (and the minimum frequency for option 3) is based on daily demand, to ensure that

nodes with larger demands receive more frequent service. Option 2 is modeled as a PVRP; option

3 is modeled as a PVRP-SC. The service benefit values, αs, s ∈ S, provide incentive to increase

frequency while balancing routing costs: α1 = 0.15, α2 = 0.1, and α3 = 0.2.

Table 3 displays the routing costs, service benefit and total costs for the three options and the

current operations. Comparing option 1 to the current operations, there is an initial 7% reduction

in routing costs from optimizing route configurations. Routing costs decrease further as the daily

visitation requirements are relaxed and more flexibility is introduced. However, comparing options

1 and 2, routing costs decrease by an additional 2%; yet, there is a 24% loss in service benefit,

leading to a higher total objective. This shows that the traditional PVRP may not provide sufficient
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flexibility to compensate for the reduced service benefit. This is remedied with the PVRP-SC.

Allowing flexibility in visit frequency leads to a 16% improvement when comparing option 3 with

the current operations with respect to total costs, and a 7% improvement over option 1. With the

PVRP-SC, the loss in service benefit is smaller, and is offset by lower routing costs. The routing

cost of the PVRP-SC solution is 14% less than that of the base case and 7% less than that of the

VRP solution. For a budget constrained agency, this improvement is quite significant.

Option Routing cost Service benefit Total objective

0. Current operations 6,315 -1,642 4,673

1. Optimized daily service 5,849 -1,642 4,208

2. Reduced service PVRP 5,751 -1,243 4,507

3. PVRP-SC* 5,425 -1,492 3,933

∗Solution obtained with δ = 0.02; solution is within 2% of the optimal solution.

Table 3: Solution results for NSLS delivery options

3.2 Test cases from the literature

We apply service choice to a 50-node PVRP test case from Christofides and Beasley (1984). Test

case 50b, unlike other 50-node cases in that reference, includes demand-dependent pre-set frequen-

cies: fi = 1 for wi · 10 cwt (500 kgs); fi = 2 for 10 < wi · 25; and fi = 3 for wi > 25. The period

is 3 days and there are 3 vehicles, each with capacity of 8,000 kgs. Figure 5 shows the geographic

distribution of the nodes. Note that nodes appear to be uniformly distributed in a square.

Three scenarios are derived from 50b to test the impact of service choice. Clearly introducing

service choice can improve results; yet the magnitude of the savings is less clear. Case I is the

standard PVRP; Case II is the PVRP-SC when service benefit is not considered in the objective,

but changes in visit frequency are allowed to increase routing efficiency; and Case III is the PVRP-

SC with service benefit considered. The pre-set frequencies are treated as minimum frequencies in

the PVRP-SC. Case II shows the impact of service choice on routing efficiency, and Case III shows
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Figure 5: Geographic distribution of libraries in Christofides and Beasley (1984) 50b

the impact on a balance of routing efficiency and service level.

Schedules are limited to {(Mon,Wed); (Tue); (Mon, Tue,Wed)}. Note that this represents a

smaller set of schedules than allowed in 50b, which is originally solved over five days. The demand

accumulation adjustments are: β1 = 2, β2 = 3, and β3 = 1. The service frequencies are: γ1 = 2,

γ2 = 1, and γ3 = 3. The node stopping costs are set to zero. The service level benefit is set to zero

for all schedules in Cases I and II. In Case III, α1 = 0.2, α2 = 0.1, and α3 = 0.3.

The value of the objective function for Case I is an upper bound on the objective function

for Case II since the visit constraints are relaxed in Case II. Similarly, the value of the routing

component of the optimal solution for Case II is a lower bound for the optimal solution for Case

III. These bounds can be used in the solution method to improve solution times. The results in

Table 4 are obtained with the heuristic variation with δ = 0.02. The service benefit, although not

part of the objective function for Cases I and II, is added back in Table 4 for comparison.

The results show that in Case II, nodes are served with higher frequency, and this flexibility

leads to a slight improvement in routing cost. A much larger change in the total objective value

is observed in Case III when the service term is given a positive weight. Compared to Case I, the
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Instance Routing cost Service benefit Total objective

Case I 998.8 -2765 -1766.2

Case II 972.7 -2803 -1830.7

Case III∗ 1326.9 -4065 -2738.1

∗Stopped with less than 640 nodes remaining (out of 2151) due to computational constraints.

Table 4: Test case results for 50b

total objective improves by 55% with a corresponding rise of 32% in the routing cost.

3.3 Discussion

An analysis of the results from the previous sections leads to general insights regarding the benefits

of service choice in the PVRP-SC. As mentioned in the introduction, adding service choice can

improve overall system performance due to increased routing efficiency and/or raised service levels

for some customers. The test cases developed from NSLS and Christofides and Beasley (1984)

clearly show significant improvement in overall system performance when service benefit is included.

The contribution of routing cost savings to this overall improvements is less clear. With NSLS,

improvements in both routing and service are observed; yet, with 50b, the improvement comes

strictly from service, and routing costs increase. To explore this issue further, we use the simple

example in Figure 6.

In the example, the depot and three customer nodes are located at 1-mile intervals along a road

segment. We ignore the service benefit and stopping costs, and focus on the routing cost savings

from moving node B (with 1-day minimum service) to a 2-day schedule. The solution in the figure

shows how the relative position of the nodes affects routing savings due to service choice. In Figure

6(a), node C, located furthest from the depot, has a 3-day visit requirement. The total roundtrip

distance of 6 miles must be covered on all days. Hence, we are indifferent between serving node

B on Tuesday or Monday/Wednesday. In this case, introducing service choice does not impact

routing cost. Alternatively, in Figure 6(b), node A, located closest to the depot, has a 3-day visit
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Figure 6: Impact of node distribution on routing efficiency due to service choice

requirement. In this case, adding service choice can reduce routing costs. We choose to serve node

B on a Monday/Wednesday route since this route passes by node B on the way to node C.

This example shows that the geographic distribution of the highest minimum frequency nodes

impacts the extent to which service choice can reduce the travel distances between remote nodes and

the depot. In particular, the potential for savings is greater when high frequency nodes are closer

to the depot than lower frequency nodes. These observations can be extended to two-dimensional

cases with many nodes. If there are a large number of randomly scattered nodes of different

minimum frequencies, it is more likely that some highest minimum frequency nodes will be located

far from the depot. Thus, service choice may not reduce routing costs significantly, as with the

Christofides and Beasley (1984) nodes. However, if nodes are distributed according to some pattern

(such as highest minimum frequencies closer to the depot and lower minimum frequencies spread

out), then service choice may reduce routing costs significantly. The NSLS nodes exhibit a mixture

of these patterns. The highest minimum frequency nodes are scattered randomly in the west region,

clustered in the southeast region close to the depot (and nodes of other minimum frequencies are

further), and nonexistent in the northeast region. Savings are achieved in the last two regions.

With the service benefit included, frequency flexibility improves the solutions in the examples
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in Figure 6 (a) and (b), as higher benefits can be obtained by moving node B to the 2-day service

level or by moving all nodes to the 3-day service level. If there are significant stopping costs, then

the term (γsτ si − wiα
s
i ) combined with routing costs determines if moves to greater service levels

are desirable.

Since the PVRP-SC relaxes the frequency constraint of the PVRP, the cost of the PVRP-SC

solution will always be lower than or equal to the cost of the PVRP solution. We can make the

following observations about the cost differences.

• If stopping costs and service benefits are ignored in the objective function, then the routing

cost of the PVRP-SC solution will always be lower than or equal to the routing cost of the

PVRP solution. The magnitude of the savings for any given problem instance depends on

the geographic dispersion of nodes (in particular, nodes at the highest minimum frequency).

• If service benefit is considered, the routing cost may rise in the PVRP-SC if the increase is

offset by an increase in service benefit. It is also possible for both routing costs and service

benefit to improve.

• The introduction of stopping costs limits the routing cost savings. With higher stopping

costs, increased frequencies above the minima may not be desirable.

4 Conclusions and future research

This paper introduces the Period Vehicle Routing Problem with Service Choice (PVRP-SC) which

allows for service choice and accounts for the benefit of improved service. We model and formulate

the PVRP-SC and develop an exact solution method with heuristic variations. The exact method

presented here can serve as a benchmark for future heuristic methods. Computational tests on the

motivating problem show improvements in routing efficiencies, and in the overall performance of

the system, as a result of introducing service choice.

As this is the first presentation of the PVRP-SC, we envision several directions for future

research, including generalizations of assumptions required for the formulation and exact solution
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method for instances of reasonable size. Heuristic solution methods may be used to solve problems

resulting from the relaxation of these assumptions. Since restrictions such as disjoint schedules and

conservative estimates of demand accumulation reduce the size of the feasible region, it may be

possible to achieve better solution values with heuristics that relax these restrictions. For example,

βs is set according to the maximum number of days between visits to ensure feasibility. For a

Tuesday-Thursday schedule, βs = 3 since the maximum accumulation of 3 days occurs between

Thursday and Tuesday while the accumulation from Tuesday to Thursday is only 2 days. In the

case of disjoint schedules and their union, and given the current definition of ysik, this conservative

approximation of βs is justified since a vehicle performs the same route each day within a disjoint

schedule; hence, no solutions are precluded. However, in a more general case with overlapping

schedules, nodes may be visited by different vehicles. An accumulation parameter defined by

schedule and day in this case, βsd, would represent accumulation precisely and allow for a richer

set of solutions.

In some practical applications of the PVRP-SC, it may be desirable to set route length con-

straints, for example, for driver shifts. Route length is determined by two factors, travel time which

is a function of the x variables and stopping cost which is a function of the y variables. A route

length constraint adds a second constraint linking the x and y variables and can be written as:

X
(i,j)∈A

tijx
u
ijk +

X
s∈S

X
i∈N

asuτ
s
i y
s
ik · Γ k ∈ K;u ∈ U

To apply Lagrangian Relaxation to decompose the problem, both linking constraints would need

to be relaxed.

Appendix

Since the routing subproblem is time consuming to solve to optimality, a heuristic is used to solve the

routing subproblem. A similar heuristic, proposed by Daskin (2004), is based on a randomization of

the Clarke and Wright (1964) algorithm and modified to solve the TSP. Briefly, the Clarke-Wright

algorithm has the following steps:
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Step 1. Begin by putting each node into its own tour.

Step 2. Compute a savings list S = {sij , ∀i, j ∈ N} where the savings obtained by

merging the routes between nodes i and j is sij = ti0 + tj0 − tij . Sort the savings

list in descending order.

Step 3. Select the best saving sij from the list. Merge the routes, removing from

the solution arcs (i, 0) and (0, j) and adding arc (i, j). Update the savings list,

S ← S\{sij}.

Step 4. Repeat Step 3 until all nodes are contained within one route.

To escape the greedy nature of the heuristic, randomization is introduced in Step 3. Instead of

picking the best possible saving, we pick randomly from among the top φ savings in the list. The

rest of the algorithm proceeds unchanged. The whole algorithm is repeated a number of times and

the best set of routes obtained is used. A similar heuristic has been used to solve the IRP with

satellite facilities by Bard et al. (1998).

In our implementation of randomized Clarke-Wright, the algorithm is repeated for 300 iterations

(based on the total amount of time allocated to find a heuristic VRP solution) and we use φ = 5.

At the end of each iteration, we also perform 2-opt and Or-opt on each route obtained.
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