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Abstract

In this paper, we explore trade-o®s between operational °exibility and operational complex-

ity in periodic distribution problems. We consider the gains from operational °exibility in terms

of vehicle routing costs and customer service bene¯ts, and the costs of operational complexity in

terms of modeling, solution methods and implementation challenges for drivers and customers.

The period vehicle routing problem (PVRP) is a variation of the classic vehicle routing problem

in which delivery routes are constructed for a period of time; the PVRP with service choice

(PVRP-SC) extends the PVRP to allow service (visit) frequency to become a decision of the

model. For the periodic distribution problems represented by PVRP and PVRP-SC, we intro-

duce operational °exibility levers and a set of quantitative measures to evaluate the trade-o®s

between °exibility and complexity. We develop a Tabu Search heuristic to incorporate a range

of operational °exibility options. We analyze the potential value and the increased operational

complexity of the °exibility levers.
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Introduction

In periodic distribution problems, vehicles visit customers over a given period of time, resulting in a

schedule which may be repeated. One such problem is the period vehicle routing problem (PVRP),

an extension of the vehicle routing problem (VRP) in which delivery routes are constructed over a

period of time (for example, multiple days) to visit customers according to preset visit frequencies.

The PVRP with service choice (PVRP-SC) extends the PVRP by making service (visit) frequency

to customers a decision of the model. In these systems, customers may be heterogeneous in their

demand levels, visit requirements, and willingness-to-pay for more frequent service. Operational

°exibility can help to avoid under-serving customers with high service requirements and over-serving

customers with low requirements.

While introducing operational °exibility in periodic distribution problems can increase e±ciency

in terms of vehicle routing costs and customer service bene¯ts, it poses challenges in (i) modeling

°exibility accurately, (ii) addressing the computational e®ort needed to solve problems with such

°exibility, and (iii) implementing resulting solutions. Francis et al. [11] introduce a formulation

and an exact solution method for the PVRP and PVRP-SC; however, the formulation and solution

method are limited in the range of operational °exibilities that can be incorporated.

In this paper we develop a Tabu Search method that can incorporate a range of operational

°exibility options, including the ability to increase the set of visit schedules, decide visit frequency,

vary the drivers who visit a customer, and decide delivery amounts per visit. Further, we de-

velop a set of quantitative measures to evaluate the trade-o®s between °exibility and complexity

in distribution problems. These are new and novel measures that may be used in various distri-

bution problems. We analyze the trade-o®s between the system performance improvements due to

operational °exibility and the resulting increases in implementation, computational and modeling

complexity as they relate to the PVRP. Our results provide insights into the value of °exibility

options and the associated increase in complexity. Using the Tabu Search method, problems with

other characteristics may be examined with respect to the trade-o®s between operational °exibility

and solution complexity.

Section 1 reviews the literature related to the periodic distribution problems discussed in this

paper, including the exact method of Francis et al. [11]. Section 2 presents the °exibility options

and complexity measures, and introduces a Tabu Search method to study general PVRPs and a set

of performance metrics to evaluate resulting solutions. Section 3 presents a computational study of
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the trade-o®s between °exibility and complexity and provides insights into these results. Finally,

Section 4 summarizes the paper and discusses future work.

1 Periodic distribution problems

Section 1.1 discusses related literature and Section 1.2 reviews the exact method of Francis et al.

[11].

1.1 Related literature

Periodic distribution problems occur in many industries, including courier services, elevator main-

tenance and repair (Blakely et al. [5]), the collection of waste (Russell and Igo [17]) and the delivery

of interlibrary loan material (Francis et al. [11]). The Period Vehicle Routing Problem (PVRP),

introduced in Beltrami and Bodin [4] and Russell and Igo [17], ¯nds a set of vehicle tours over

a period of days that minimizes total travel time while satisfying operational constraints (vehi-

cle capacity and pre-determined visit requirements for each customer). A set of visit schedules is

available for each customer (node), and one schedule from this set must be chosen. A schedule

represents the days on which a node is visited. All feasible schedule options for a node must pro-

vide the pre-determined number of visits for that node. For example, if over the period of one

week, a node is to be visited three times, the feasible schedule options may include: Mon-Tue-Thu,

Mon-Wed-Fri, or Tue-Wed-Fri.

Heuristic solution methods for the PVRP are presented in Tan and Beasley [18], Russell and

Gribbin [16], Chao et al. [7], Cordeau et al. [8], and Angelelli and Speranza [1]. Francis et al.

[11] introduce the Period Vehicle Routing Problem with Service Choice (PVRP-SC), which allows

customers to be visited more often than their pre-determined frequencies. Service choice may be

advantageous if, for example, two customers with di®erent minimum requirements are located in

isolation of all other customers and the depot. If the schedule options for these customers do not

contain overlapping days, it may be bene¯cial to raise the visit frequency of one customer such that

both customers are visited together. Francis et al. [11] show that this is also true in less extreme

cases in which arriving at a certain region makes it bene¯cial to visit neighboring customers, hence

increasing the frequency with which some nodes are visited. Francis and Smilowitz [10] present a

continuous approximation model of the PVRP-SC and show that the value of service choice depends

on the relative density of customers of di®erent visit requirements.
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When °exibility in service choice is introduced, the problem begins to resemble the Inventory

Routing Problem (IRP). The IRP, like the PVRP-SC, determines visit frequency and route con¯g-

uration simultaneously, but with an additional decision of how much to deliver to the customers;

see Anily and Federgruen [3] and Chan et al. [6], and the surveys in Federgruen and Simchi-Levi

[9], Anily and Bramel [2], and Kleywegt et al. [14]. Rusdiansyah and Tsao [15] model the IRP as

an integrated IRP/PVRP with Time Windows. In the IRP, service-related costs are modeled as

holding costs associated with each item unit. In the PVRP-SC, the amount delivered to a customer

is determined by the schedule chosen for the customer and the adopted delivery strategy, as de¯ned

in Section 2.1. Service is modeled as a bene¯t term related to each customer.

1.2 Exact method from Francis et al. [11]

We review the formulation and the exact method for the PVRP-SC from Francis et al. [11], which

can also be used for the PVRP. Let D denote the set of days in the period and S denote the set

of visit schedules. The parameter asd links schedules to days: asd = 1 if day d 2 D is in schedule

s 2 S and asd = 0 otherwise. Each schedule s 2 S has an associated visit frequency °s measured

by the number of days in the schedule: °s =
P
d2D asd, and an associated bene¯t ®s related to a

monetary bene¯t of the corresponding frequency.

The PVRP-SC is de¯ned for a set of nodes, N0, which consists of customers nodes, N , and a

depot, i = 0, and a set of arcs connecting the nodes, A = f(i; j) : i; j 2 N0g. Each customer node

i 2 N has a known daily demand,Wi, and a visit requirement, fi, measured in days per period. The

demand accumulated between visits, wsi , is a function of the schedule s 2 S and the daily demand

of the node, which is set at the maximum accumulation between successive visits. The stopping

time at a node, ¿ si , is a function of the frequency of the schedule since more items accumulate with

less frequent service and, therefore, require more time to load/unload. Associated with each arc

(i; j) 2 A is a known travel time, cij . There is a set, K, of vehicles, each with capacity C.

The following allocation and routing variables are used.

ysik =

8><>:1 if node i 2 N is visited by vehicle k 2 K on schedule s 2 S

0 otherwise

xdijk =

8><>:
1 if vehicle k 2 K traverses arc (i:j) 2 A on day d 2 D

0 otherwise

We introduce a parameter, ¯ ¸ 0, which weighs the service bene¯t relative to vehicle travel and
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stopping times. The formulation of the PVRP-SC from Francis et al. [11] is:

Z¤ = min
X
k2K

24X
d2D

X
(i;j)2A

cijx
d
ijk +

X
s2S

X
i2N

°s¿ si y
s
ik ¡ ¯

X
s2S

X
i2N

Wi®
sysik

35 (1a)

subject to

X
s2S

X
k2K

°sysik ¸ fi 8i 2 N (1b)

X
s2S

X
k2K

ysik · 1 8i 2 N (1c)

X
s2S

X
i2N

wsi asdy
s
ik · C 8k 2 K; d 2 D (1d)

X
j2N0

xdijk =
X
s2S

asdy
s
ik 8i 2 N ; k 2 K; d 2 D (1e)

X
j2N0

xdijk =
X
j2N0

xdjik 8i 2 N0; k 2 K; d 2 D (1f)

X
i;j2Q

xdijk · jQj ¡ 1 8Q µ N ; k 2 K; d 2 D (1g)

ysik 2 f0; 1g 8i 2 N ; k 2 K; s 2 S (1h)

xdijk 2 f0; 1g 8(i; j) 2 A; k 2 K; d 2 D (1i)

The objective function (1a) balances travel time, stopping time and demand-weighted service

bene¯t. Francis and Smilowitz [10] analyze the impact of the value of ®s on the resulting solution.

Constraints (1b) enforce the visit requirement for each node. Constraints (1c) ensure that one

schedule and one vehicle are chosen for each node. Constraints (1d) represent vehicle capacity

constraints. Constraints (1e) link the x and y variables. Constraints (1f) ensure °ow conservation

at each node. Constraints (1g) are the subtour elimination constraints and ensure that all routes

contain a visit to the depot. Constraints (1h) and (1i) de¯ne the binary variables for allocation

and routing, respectively.

The exact solution method in Francis et al. [11] consists of a Lagrangian relaxation phase which

relaxes constraints (1e) to decompose the problem into a capacitated assignment subproblem in

the y variables and a prize-collecting traveling salesman subproblem in the x variables. If a gap

remains after the Lagrangian relaxation phase, it is closed using a branch-and-bound phase that

incorporates information from the earlier phase. A heuristic variation of this approach truncates

nodes of the branch-and-bound tree that are within ±% of the lower bound, obtaining solutions
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within ±% of the optimal. Using this variation, PVRP-SC instances with up to 50 nodes are solved

to within ± = 2% of optimality.

2 Operational °exibility and complexity in the PVRP and the

PVRP-SC

Section 2.1 presents the °exibility options and complexity measures for the PVRP. Section 2.2 intro-

duces a Tabu Search heuristic capable of incorporating all levers of operational °exibility discussed

in Section 2.1. Section 2.3 de¯nes performance metrics to quantify the operational complexity of

resulting solutions.

2.1 Flexibility options and complexity measures

Francis et al. [11] highlight the di±culties in formulating and solving the PVRP-SC that result

from introducing service choice. Several assumptions are made regarding schedule options and

visit conditions to accommodate service choice in their formulation. Their exact solution method

yields optimal solutions to the PVRP-SC for moderate-sized instances with these assumptions. In

this paper, we develop a Tabu Search heuristic to solve more general cases of the PVRP and the

PVRP-SC. As a result, we can relax some modeling assumptions of the exact method and evaluate

the value and increased complexity of additional levers of operational °exibility. Throughout this

paper, we use the following terminology to discuss °exibility and complexity:

1. Operational °exibility: The ability to make changes to operating conditions. We focus on the

following levers of operational °exibility that are commonly found in distribution systems:

(a) Service choice. The ability to determine customer visit frequency subject to the stated

visit requirement. A customer's visit frequency is the number of times the customer

is visited in the period. A customer's visit requirement is the minimum number of

visits allowed. Without service choice °exibility, customers are served at their visit

requirements.

(b) Crew °exibility. The ability to have multiple drivers visit a customer during the period.

Without crew °exibility, each customer is visited by one driver throughout the period.

(c) Schedule options. The ability to o®er a greater number of schedule options of di®erent

visit patterns that can be chosen by the service provider to serve a customer.
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(d) Delivery strategy. The ability to choose the amount delivered during each customer visit

by allowing inventory or shortage, assuming all demand is eventually served.

2. Operational complexity: The di±culty of solution implementation, from the perspective of

the service provider and its customers. Solutions with high operational complexity may be

di±cult to convey (e.g. no simple rules characterize the service selection decision), may

involve a high learning cost for drivers, and/or may cause dissatisfaction to customers. We

consider three measures of operational complexity:

(a) Arrival span: The variability in the time of day when customers are visited over the

period. In applications where sta±ng at customer locations is tied to vehicle visits, high

variability in visit time can increase customer sta±ng complexity.

(b) Driver coverage: The portion of the total service region visited by a driver over the

period. Zhong et al. [20] model a learning/forgetting behavior for drivers and show that

dispatching drivers consistently to the same geographic areas results in driver familiarity

and improved driver performance.

(c) Crewsize: The number of di®erent drivers visiting a customer over the period. Smaller

crewsize indicates consistent dispatching of drivers to customer locations, building re-

lationships between drivers and customers. UPS Corp. [19] cites driver-customer rela-

tionships as a competitive advantage in its package delivery operations, attributing 60

million packages a year to sales leads generated by drivers.

Using the Tabu Search heuristic, we consider the four dimensions of operational °exibility in

periodic routing problems and explore their impact on the three measures of operational complexity.

Next, we show how these measures of °exibility and complexity are modeled in the periodic routing

problems.

Results from Francis et al. [11] indicate that the magnitude of the savings obtained by in-

troducing service choice in the PVRP for a given instance depends on geographic distribution of

nodes (in particular, nodes of highest visit requirements). In this paper, we explore how additional

levers of operational °exibility impact the magnitude of savings and the complexity of the resulting

solutions, and how the impact of these levers depends on problem characteristics such as node

distribution. We make the following observations regarding these levers in the context of the model

and solution method of Francis et al. [11]:
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1. Service choice: Service choice °exibility can be restricted by modeling the problem with

constraint (1b) ¯xed at equality.

2. Crew °exibility: The allocation variables, ysik, are de¯ned such that nodes are always visited

by the same driver. In the motivating example in Francis et al. [11], this is required due to

access restrictions. Assigning nodes only to schedules, ysi , relaxes this assumption and may

reduce routing costs. However, since the capacity constraints of the PVRP-SC depend on

the vehicle index and service level at each node, crew °exibility requires either a non-linear

capacity constraint or a ¯fth index on the routing variables for schedule choice.

3. Schedule options: Computational limitations may restrict the number of schedule options

considered by the exact method. Choosing schedule options carefully can o®er more discrim-

inating choices with limited variation in driver routes. Francis et al. [11] observe that for

any set of schedules S consisting of jSj¡1 disjoint schedules (schedules that do not share any

common days) and a schedule that is the union of all disjoint schedules, there are at most

jSj¡1 di®erent routes for each vehicle. Thus, the number of routing variables, xdijk, is reduced

signi¯cantly since it is not necessary to model each day d 2 D, but rather only one unique

delivery day for each disjoint schedule which is repeated each day of that schedule.

4. Delivery strategies: It is assumed in most periodic distribution problems that the amount

delivered to a node is ¯xed a priori. Relaxing this assumption may improve routing costs and

service bene¯ts; however, adding a set of decision variables for the delivery amount increases

the di±culty of the problem signi¯cantly.

As discussed above, modeling the levers of °exibility (apart from service choice) using the exact

solution method is di±cult and the resulting computational e®ort is signi¯cant. Therefore, we

develop a Tabu Search heuristic that can incorporate all levers of °exibility.

2.2 Tabu Search

Cordeau et al. [8] implement a Tabu Search heuristic for the PVRP and obtain solutions equal to

or better than the best solutions for PVRP test cases in the literature. Angelelli and Speranza [1]

also successfully use a Tabu Search method to solve an extension of the PVRP. We develop a Tabu

Search method based on that of Cordeau et al. [8], with suitable extensions to model the PVRP-

SC and incorporate operational °exibility. The principal change to the Tabu Search algorithm is

8



the de¯nition of a move (in Step 2(b) below), considering moves from one schedule to another,

rather than from one route to another. This change also allows for the exploration of the di®erent

°exibility levers.

Tabu Search is a local search improvement method in which neighbors of the current solution are

explored at each iteration; see Glover and Laguna [13]. For the PVRP-SC, a solution is a complete

speci¯cation of the allocation variables (either ysik or ysi ) and a set of routes for each vehicle on

each day (the xdijk variables), such that each node i 2 N is assigned a schedule that satis¯es

or exceeds its visit requirement, fi. An attempt is made to improve the solution by changing

the schedule allocation of a given node at each iteration. Routes are constructed based on these

schedule allocations, using the GENI heuristic of Gendreau et al. [12] which evaluates various tour

con¯gurations through a limited number of insertions and reinsertions. The solutions are allowed

to be infeasible with respect to capacity but not with respect to visit requirements. Capacity

infeasibilities are penalized in the objective function using a penalty term as in the TABUROUTE

procedure of Gendreau et al. [12]. Brie°y, the algorithm is as follows:

1. Construct an initial solution:

(a) Allocate each node i 2 N to the lowest-frequency schedule that satis¯es the visit re-

quirement fi (choosing randomly if more than one schedule is a candidate).

(b) Construct routes to visit nodes for each day with the GENI heuristic. Without crew

°exibility (i.e. ysik), each node is always allocated to the vehicle chosen for the ¯rst day

of the schedule.

(c) Create a tabu list (initially empty) to store moves that are temporarily prohibited.

2. Construct a set of possible moves:

(a) Randomly select a set of nodes as possible candidates for movement.

(b) For each node, consider all moves from its present schedule allocation to another (frequency-

feasible) allocation which contains at least one of its p-closest geographic neighbors.

(c) Calculate the change in the objective function for each candidate move using the GENI

heuristic to evaluate changes in routing costs with penalties for capacity infeasibility.

3. Identify the best move and check its tabu status from the tabu list. A tabu move may be

accepted only if its solution is feasible and better than the best feasible solution; otherwise,
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the best non-tabu move is accepted (according to standard Tabu Search acceptance criteria

for feasible and infeasible solutions) and the solution is updated accordingly.

4. Update the tabu list to include the implemented move; the move is declared tabu for a random

number of iterations.

5. Return to Step 2 and repeat until no improvements in the best feasible or infeasible solutions

are found for 60 iterations.

Suitable values for the number of candidate nodes chosen in Step 2 and the value of p are

discussed in Gendreau et al. [12]. In cases with many schedule options, requiring the presence of

a geographic neighbor in any candidate schedule limits the complexity of the evaluation phase; in

cases where this requirement results in very few schedule choices, the algorithm randomly chooses

from all frequency-feasible choices to ensure diversity of moves.

The Tabu Search method is used to solve the PVRP by not allowing service choice in Step

2. With crew °exibility in Step 2 (i.e. ysi ), we pick the least-cost vehicle assignments for each

individual day, given the chosen schedule. Without crew °exibility, we explore all possible vehicle-

schedule combinations. Schedule options are controlled by the set S, which can also model delivery

strategy, as described in Section 3.4.4.

Note that unlike some Tabu Search implementations, no post-optimization is attempted on the

routes after each movement as numerical tests show that resulting improvements are minimal and

the post-optimization improvement routines are computationally expensive.

2.3 Performance metrics

We use two sets of performance metrics to quantify the trade-o®s between operational °exibility and

operational complexity in periodic distribution problems, all of which apply to PVRP and PVRP-SC

solutions. Metrics in the ¯rst set, related to routing cost and service bene¯t, are explicitly considered

in the objective function of both the exact solution method and Tabu Search method; therefore,

the solution methods attempt to optimize these metrics. Metrics in the second set are related to

operational complexity (driver coverage, crewsize and arrival span). These metrics are calculated

after solutions are obtained and, therefore, are not optimized by the solution method. It is possible,

however, to consider these metrics implicitly during the solution phase through restrictions on

variable and parameter de¯nitions. For example, without crew °exibility, we de¯ne allocation

variables by ysik and the crewsize is always one driver at each node. Further, restricting schedule
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choices in the set S (for example, only disjoint schedules and their union) reduces complexity in

driver coverage and arrival span by limiting the number of di®erent routes each driver performs.

In the following, we describe how the metrics for operational complexity are calculated.

Obtaining the arrival span is straightforward given a solution (x̂; ŷ) to the PVRP-SC. All routes

are assumed to be performed in a counter-clockwise direction so that visit times are not a®ected

by the choice of route direction. If node i is allocated to schedule s and visited by vehicle k on day

d, the time at which it is visited is:

T di =
X

(m;j)2Akd(i)

·
cmj x̂

d
mjk +

X
r2S

¿ rmŷ
r
mk

¸
(2a)

where Akd(i) is the set of arcs traversed before node i by vehicle k on day d. For each s 2 S, we

de¯ne Ds as the set of days d 2 D where asd = 1. Note that jDsj = °s. The mean and standard

deviation of the visit times for a node, given a chosen schedule s, are:

Ti =
1

°s

X
d2Ds

T di (2b)

¾i =

8><>:
0 if °s = 1rP

d2Ds [T
d
i ¡Ti]2

°s¡1 if °s > 1
(2c)

We de¯ne the average arrival span of a solution over all nodes i 2 N as:

¾ =
1

jN j
X
i2N

¾i (2d)

Calculating driver coverage and crewsize is straightforward without crew °exibility (i.e., with

ysik); however, calculating these metrics requires additional processing of solutions with crew °exi-

bility (i.e., with ysi ). With crew °exibility, the vehicle index k 2 K assigned to a route is arbitrary

for any PVRP-SC solution, as shown with the example in Figure 1. The ¯gure depicts a PVRP-SC

solution for an instance with six nodes, two vehicles, and a period of two days. On day 1, the vehicle

indexed by k = 1 visits the nodes on the left side of the service region and the vehicle indexed by

k = 2 visits the nodes on the right side. On day 2, the indices are reversed. Without crew °exibil-

ity, the solution must assign the same vehicle index to the left region (and to the right region) on

both days; however, with crew °exibility, there is no incentive to assign the same vehicle index to

the left region on both days. It would be an overestimation of the operational complexity to say

that the drivers serve di®erent regions on the two days, when the indices may be switched without

a®ecting the objective function. In this example, the complexity-minimizing assignment of indices

11



is obvious. However, one can envision many instances in which the assignments of indices are not

straightforward, particularly with multiple vehicles and multiple days. Therefore, we introduce a

mathematical programming approach to assign the driver indices to the arbitrary vehicle indices of

the PVRP-SC solution. The goal of this approach is to minimize total driver coverage. We focus

on areas rather than nodes since the set of nodes visited changes by day. Such a policy corresponds

to an industry practice in which a dispatcher may allocate service areas to drivers familiar with

certain neighborhoods and/or customers.

1 2

3 4

Day 1 solution Day 2 solution

1 2

3 4

Vehicle index
k = 1

Vehicle index
k = 2

Vehicle index
k = 2

Vehicle index
k = 1

1 2

3 4

1

3 4

Figure 1: Same solutions may be assigned di®erent vehicle indices

We partition the service region into a set L of cells (cells may represent city blocks), indexed

by l, such that each cell contains at least one node. In Figure 1, the service region is divided into

four cells: l = 1; :::; 4. Let Nl denote the set of nodes contained in cell l 2 L and let V be the set of

drivers. We assume that jV j = jKj. A driver covers a cell if he visits at least one node in that cell.

The assignment problem minimizes the number of cells that each driver covers. Given a PVRP-SC

solution (x̂; ŷ), we de¯ne a parameter bkld as:

bkld =

8<: 1 if vehicle index k 2 K visits cell l 2 L on day d 2 D; i.e. if
P
i2Nl

P
j2N x̂

d
ijk ¸ 1

0 otherwise

We de¯ne two decision variables:

Uvl =

8<: 1 if driver v 2 V visits cell l 2 L at least once during the period

0 otherwise

Wvkd =

8<: 1 if driver v 2 V is assigned to vehicle index k 2 K on day d 2 D
0 otherwise

12



The assignment problem is formulated as:

Za = min
X
v2V

X
l2L

Uvl (3a)

subject to

Uvl ¸
X
k2K

bkldWvkd 8v 2 V; l 2 L; d 2 D (3b)

X
k2K

Wvkd ¸ 1 8v 2 V; d 2 D (3c)

X
v2V

Wvkd · 1 8k 2 K; d 2 D (3d)

Wvkd 2 f0; 1g 8v 2 V ; k 2 K; d 2 D (3e)

Uvl ¸ 0 8v 2 V; l 2 L (3f)

The objective (3a) minimizes the number of cells covered by the drivers. Constraints (3b) set Uvl

to 1 if driver v 2 V is assigned to a vehicle index k 2 K that visits cell l 2 L on at least one day.

Constraints (3c) ensure that each driver is assigned to a vehicle index on each day. Constraints

(3d) ensure that only one driver is assigned to a vehicle index on a given day. Constraints (3e) and

(3f) de¯ne the decision variables (note that Uvl is binary, given binary values for Wvkd).

Given a solution (Û;Ŵ) to the assignment problem, we can calculate driver-dependent metrics.

Recall that driver coverage measures the portion of the geographic area covered by drivers. For

each driver v 2 V , the number of cells visited is
P
l2L Ûvl. Driver coverage is de¯ned as the ratio

of the number of cells visited to the total number of cells:

µv =
1

jLj
X
l2L

Ûvl (4a)

The average driver coverage for a given PVRP-SC solution is:

µ =
1

jV jjLj
X
v2V

X
l2L

Ûvl =
Za
jLjjV j (4b)

where Za is the objective value for Formulation (3). Clearly, the number of cells and vehicles a®ects

the possible values of µ. We would expect µ ¼ 1
jV j for solutions that equally partition neighborhoods

between drivers (with no overlap). High values of the average driver coverage, µ À 1
jV j , indicate a

complex solution in which drivers may visit many neighborhoods.

Using the solution Ŵ from Formulation (3) and the PVRP-SC solution (x̂; ŷ), we can determine

which drivers visit a node during the period. Let indicator eiv = 1 if node i 2 N is visited by driver
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v 2 V during the period and 0 otherwise. For each node i 2 N and driver v 2 V , we have:

eiv =

8<: 1 if
P
d2D

P
k2K

P
j2N x̂

d
ijkŴvkd ¸ 1

0 otherwise
(5a)

We calculate the crewsize for a node i over the period as:

Ái =
X
v2V

eiv (5b)

The average crewsize in the PVRP-SC solution is:

Á =
1

jN j
X
i2N

Ái (5c)

Accordingly, Á ranges from 1 to jV j. A high value of Á indicates that, on average, many drivers visit

a node, which may be undesirable in applications which require drivers to have knowledge/training

speci¯c to customer locations (con¯guration of the facility layout, security clearance, etc.).

In the numerical analysis in Section 3, we evaluate PVRP and PVRP-SC solutions relative

to the following metrics: objective function Z; average arrival span ¾; average driver coverage µ;

and average crewsize Á. Additionally, we consider the computational complexity of the solution

methods with solution times.

3 Numerical analysis

Section 3.1 evaluates the Tabu Search heuristic relative to the exact method from Francis et al. [11].

Section 3.2 introduces the test cases in the numerical studies. Section 3.3 introduces the measures

used in the numerical analysis and Section 3.4 presents and analyzes the results.

3.1 Evaluation of Tabu Search

We implement the Tabu Search heuristic in C++ and execute on a Sun Fire 150 workstation with

two UltraSPARC IIi processors. To evaluate the Tabu Search method, we use problem instances

from Francis et al. [11] solved with the exact method. The test cases range in size from 12 to 40

nodes, with 3 and 4 vehicles, and various capacity levels. We impose the same assumptions as

Francis et al. [11] (i.e., allowing service choice, no crew °exibility, a schedule set of fMon-Wed-Fri,

Tue-Thr, dailyg, and delivery of accumulated demand).

Table 1 compares the average di®erence (aggregated over vehicle and capacity values) in the

two solution methods, examining the percentage di®erences between the objective, the performance
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Nodes Optimality Gap ¾ Gap µ Gap Change in sol. time

12 0.0% 0.3% 0.1% 81.2%

16 0.1% 0.2% 0.4% -5.2%

20 0.0% 0.3% 0.4% -39.0%

28 0.1% 0.4% 0.3% -59.3%

36 0.3% 0.7% 0.5% -71.9%

40 0.4% 0.9% 0.7% -84.6%

Table 1: Comparison of Tabu Search solutions with exact solutions

measures ¾ and µ, and the solution time. Since there is no crew °exibility, the crewsize measure

Á = 1 in all cases. The average objective values of Tabu Search solutions are within 0.4% of

optimality. The operational complexity of solutions obtained by the two methods di®er by less

than 1% across all above measures. Thus, the Tabu Search ¯nds solutions that are close to optimal

and provide a good representation of the operational complexity of the optimal solutions given the

assumptions of the exact method.

An important advantage of the Tabu Search method is its signi¯cantly lower computation times

compared to the exact method. The exact solution method takes more than 8 hours for instances

of the PVRP-SC with 40 nodes, yet the Tabu Search can solve these instances in roughly 40 CPU

minutes. Additionally, the Tabu Search obtains solutions within a reasonable amount of time for

larger instances that cannot be solved with the exact method. While the heuristic version of the

exact method could be used with the precision (±) set to high values for larger instances, we expect

that the Tabu Search method would outperform such solutions, both in terms of solution quality

and solution times. Further, even with large ± values, the heuristic version cannot be used to test

all °exibility levers due to modeling and computational limits. Given the ability of the Tabu Search

to incorporate °exibility levers, as well as its speed and quality, we use the Tabu Search to produce

solutions for our analysis.

3.2 Test cases

Francis et al. [11] ¯nd that the routing e±ciency gains from service choice in the PVRP-SC are im-

pacted by the geographic distribution of customer nodes. We examine how geographic distribution

impacts the gains from other °exibility levers. Further, we examine how these °exibility levers in

turn impact the magnitude of savings from service choice.
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We create a set of randomized instances in idealized patterns of various city con¯gurations.

Figure 2 displays the four con¯gurations of the service region for instances with characteristics

of demand patterns and node distributions that mimic trends in cities today. Each city covers a

circular area of 100 miles diameter, and the service region is divided into square cells (10mi£10mi)

for calculation of the driver-dependent metrics. Cells that do not contain nodes are eliminated from

the set L. In all con¯gurations, the depot is located in the center of the region. The service region

is divided by customer visit requirements over a ¯ve-day period (either 2 days, 3 days, or 5 days).

a. Traditional city model, 
TC

b. Traditional city with 
sprawl model, TCSP

c. Sprawl model, SP d. Vanishing city model,
VC

5 days 

3 days

2 days

5 days 

2 days and 3 days
2 days, 3 days,

and 5 days
2 days 

3 days

5 days

Figure 2: Test case con¯gurations

Con¯guration TC in Figure 2(a) represents a traditional city in which high demand customers

are located near the center of the region and demand density decreases with distance from the

center. Con¯guration TCSP in Figure 2(b) is a variation of the traditional city in which there

is a mix of low and moderate demand levels beyond the region of high demand in the center.

Con¯guration SP in Figure 2(c) represents modern sprawl in which demand levels are scattered

throughout the region with no central business district. Con¯guration VC in Figure 2(d) represents

a city in which high demand has left the central business district and moved to the outlying areas.

Numerical studies from Francis et al. [11] suggest that test cases resembling Con¯guration TC

observe signi¯cant improvements in routing e±ciency and customer service with service choice

°exibility, while cases resembling Con¯guration SP experience lower routing e±ciency gains (while

still increasing customer service). We use the city con¯gurations here to study the interplay between

geographic node distribution and a broader range of operational °exibility.

Ten problem instances with 200 nodes are randomly generated for each con¯guration. Nodes

are uniformly scattered within each subregion. Demands are drawn from a truncated normal
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distribution (mean 125, standard deviation 100), and the resulting demand value is accepted if it

¯ts the subregion characteristics, given as follows: 0 to 75 items/day for fi= 2 days, 76 to 150 for

fi= 3 days, and 151 to 250 for fi= 5 days. Otherwise, the demand value is discarded and another

realization is created.

Label jSj Visit requirements Schedule set

A 3 2,3,5 days (TR); (MWF ); (MTWRF )

B 5 2,3,5 days (TR); (TF ); (MWF ); (MWR); (MTWRF )

C 5 1-5 days (W ); (TR); (MWF ); (MTRF ); (MTWRF )

D 7 1-5 days (W ); (TR); (TF ); (MWF ); (MWR);

(MTRF ); (MTWRF )

E 10 1-5 days (W ); (R); (F ); (MR); (TR); (TF );

(MWF ); (MWR); (MTRF ); (MTWRF )

Table 2: Schedule options for ¯ve-day test cases

For each test case, we consider the sets of schedule options listed in Table 2. The ¯rst column

lists the label for the schedule set. The second column lists the number of schedules in the set S

and the third column lists the visit requirement values (fi) for the nodes. The schedule set is shown

in the fourth column. The set A includes only disjoint schedules and their union, which is used

with the exact solution method in Francis et al. [11]. All other sets include non-disjoint schedules

which cannot be easily incorporated into the exact method. The service bene¯t (®s) values are

0.05, 0.1, 0.15, 0.175, and 0.2 for schedules with °s values of 1, 2, 3, 4 and 5 respectively1.

3.3 Measuring e±ciency and complexity

We examine the impact of introducing °exibility levers in pairwise comparisons with and without

°exibility. The superscript cons denotes the value of the constrained solution and the superscript

flex denotes the value of the °exible solution, both with respect to a certain °exibility lever.

1Bene¯ts speci¯c to each schedule option can be incorporated in the Tabu Search procedure easily.
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Objective improvement ¢Z =
Zflex ¡ Zcons

Zcons
(6)

Arrival span complexity rise ¢¾ =
¾flex ¡ ¾cons

¾cons
(7)

Driver coverage complexity rise ¢µ =
µflex ¡ µcons

µcons
(8)

Crewsize complexity rise ¢Á =
Áflex ¡ Ácons

Ácons
(9)

The objective improvement is decomposed into two parts: the contribution due to the routing

cost component, ¢Zc;¿ , and the contribution due to the service bene¯t component ¢Z® . The driver

coverage metric µ is bounded by 1
jV j · µ · 1. Hence, the corresponding change in driver coverage

is bounded by ¡(jV j ¡ 1) · ¢µ · (jV j ¡ 1). The value of crewsize Á is bounded by 1 · Á · jV j,
and the corresponding change by ¡(jV j ¡ 1) · ¢Á · (jV j ¡ 1).

While we cannot derive such bounds for ¢Z and ¢¾, we use the example in Table 3 to illustrate

how the magnitude of the measures may be interpreted. For a Traditional City instance with 200

nodes and 5 vehicles, the PVRP-SC solution with schedule set A and without crew °exibility yields

an objective value of Z = $3; 961 (routing cost: $5,082; service bene¯t: $1,121), ¾ = 1:86 hours,

µ = 0:22 (15.4/70 cells), and Á = 1 driver, shown in the base case column of the table.

Base case Variation 1 Variation 2

Metric Value Value ¢ Value ¢

Z $3,961 $3,945 -0.4% $3,640 -8.1%

¾ 1.86 hours 1.9 hours 2.2% 2.2 hours 18.3%

µ 0.22 (15.5/70) 0.23 (16.1/70) 4.5% 0.25 (17.5/70) 13.6%

Á 1 driver 1.04 drivers 4.0% 1.18 drivers 18.0%

Table 3: Example of metric changes

Adding crew °exibility (Variation 1 in the table), the objective function decreases by $16 and

¢Z = ¡0:4%. Further, we observe ¢¾ = 2:2%, corresponding to a rise in arrival span ¾ to 1.9

hours. Similarly, ¢µ = 4:5%, corresponding to a rise in µ to 0.23 (16.1/70 cells). Finally, ¢Á = 4:0%

and Á = 1:04 drivers per customer (2 customers are visited by 3 drivers, 5 customers are visited

by 2 drivers and the remaining 193 customers by a single driver). This is representative of a small

change in the solution.

Increasing the set of schedules from A to E (Variation 2 in the table), we obtain ¢Z = ¡8:1%,
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with 6.1% savings due to routing, and 2.0% savings due to service bene¯t increases (12 more nodes

are served at higher frequencies). We observe ¢¾ = 18:3%, with arrival span ¾ rising to 2:2 hours.

We observe ¢µ = 13:6% as µ rises to 0.25 (17.5/70 cells). In the °exible solution, ¢Á = 18%. Here,

2 nodes are visited by 3 drivers, 32 nodes by 2 drivers, and the remaining 166 nodes by 1 driver,

yielding Á = 1:18 drivers per customer. This is representative of a large change in the solution.

3.4 E®ect of °exibility

In what follows, we examine the e®ect of the °exibility levers on the performance metrics. Section

3.4.1 shows the e®ect of crew °exibility and Section 3.4.2 shows the e®ect of °exibility in schedule

options. Section 3.4.3 considers the tradeo®s between °exibility and complexity when schedule

options and service choice are considered together. Section 3.4.4 considers the e®ect of °exibility

in delivery strategies. Finally, Section 3.4.5 presents managerial insights from our analysis.

3.4.1 Crew °exibility

Table 4 shows the average percentage change in the metrics between solutions without crew °exibil-

ity (cons) and with crew °exibility (flex). In both cases, we use schedule set E which provides the

most schedule options. We show the metrics under three conditions: without service choice (PVRP);

with service choice and ¯ = 0, (PVRP-SCrouting); and with service choice and ¯ = 1 (PVRP-SC).

The PVRP-SCrouting option allows for routing improvements due to frequency changes, but these

changes do not a®ect the objective function through the service bene¯t term.

PVRP PVRP-SCrouting PVRP-SC

¢Zc;¿ ¢Z® ¢¾ ¢µ ¢Á ¢Zc;¿ ¢Z® ¢¾ ¢µ ¢Á ¢Zc;¿ ¢Z® ¢¾ ¢µ ¢Á

TC -0.4 N/A 0.4 2.8 2.2 -1.8 N/A 1.5 7.8 6.1 -1.9 0.0 1.6 7.8 6.1

TCSP -0.4 N/A 0.4 2.6 2.3 -1.3 N/A 0.8 6.6 5.4 -1.3 -0.1 0.9 6.6 5.4

SP -0.3 N/A 0.3 2.2 2.1 -1.2 N/A 1.0 6.7 5.4 -1.1 -0.2 1.0 6.7 5.4

VC -0.1 N/A 0.4 2.4 1.8 -1.7 N/A 1.4 7.0 5.9 -1.6 -0.1 1.4 7.0 5.9

Table 4: E®ects of introducing crew °exibility (all values are in %)

The average objective improvement in all cases in Table 4 is consistently less than 2%, with uni-

form variance of less than 1% in individual observations. While crew °exibility appears to improve

the PVRP-SC objectives more than PVRP objectives, the improvement is still small. PVRP-SC

solutions have a larger feasible region (more schedule choices are possible); therefore, crew °exibility
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expands the feasible region more when used in conjuction with service choice °exibility. For the

PVRP-SC, the relative magnitude of the change in the two components of the objective indicate

that most of the savings are due to improved routing e±ciency without signi¯cant change in the

service allocation of the nodes. Overall the geographic con¯guration does not have a large e®ect

on the objective improvement.

As expected, adding crew °exibility has a noticeable impact on the complexity measures µ

and Á since crew °exibility expands the set of solutions by speci¯cally those solutions that are

characterized by higher values of individual µ (visiting more nodes increases Uvl for drivers) and

Á (by de¯nition). Again, this impact is larger when service choice is allowed since more solutions

are feasible. The change in ¾ is not signi¯cant since nodes are visited in an order which is a®ected

mostly by their position relative to the depot, and less by changing the vehicle routes (particularly

in dense delivery areas).

From a practical standpoint, these results suggest that system regularity can be enforced by

removing crew °exibility, without signi¯cantly a®ecting the objective function. The bene¯t from

removing crew °exibility is in creating solutions with driver delivery districts that have fewer

overlapping areas, which reduces complexity for customers and drivers. Solution times for the

Tabu Search are not signi¯cantly a®ected by allowing or removing crew °exibility, with the average

solution time of 190 minutes with a standard deviation of less than 8 minutes across all instances.

3.4.2 Schedule options

Table 5 shows the average percentage change in the metrics, comparing solutions with schedule

set A (cons) with solutions with schedule set E (flex). Crew °exibility is used in both cases to

allow the system to choose the best vehicle assignments for all days which allows us to examine the

unrestricted change in crewsize under schedule option °exibility.

PVRP PVRP-SCrouting PVRP-SC

¢Zc;¿ ¢Z® ¢¾ ¢µ ¢Á ¢Zc;¿ ¢Z® ¢¾ ¢µ ¢Á ¢Zc;¿ ¢Z® ¢¾ ¢µ ¢Á

TC -2.8 N/A 3.3 1.7 2.1 -5.4 N/A 8.3 3.1 4.9 -5.3 -2.9 9.8 4.9 6.2

TCSP -2.5 N/A 2.9 0.7 1.6 -4.8 N/A 7.1 1.9 3.6 -4.7 -2.7 8.5 2.1 4.8

SP -2.1 N/A 2.3 1.0 1.8 -3.9 N/A 6.8 2.8 4.0 -3.8 -2.4 7.2 3.0 7.9

VC -1.5 N/A 1.0 1.1 1.9 -3.2 N/A 3.1 2.1 4.2 -2.9 -1.4 3.3 3.3 5.6

Table 5: E®ects of increasing number of schedules (all values in %)
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Table 5 suggests that the geographic distribution of nodes impacts e±ciency and complexity

when increasing the number and type of schedule options. While the individual di®erence between

instances results in variances ranging from 0 to 4% for ¢Zc;¿ , increasing schedule options appears

to be more bene¯cial for con¯gurations with high frequency nodes distributed close to the depot.

In other cases, such as Con¯gurations SP and VC, limiting the set of schedules is less costly. There

are two reasons for this variation between centralized demand con¯gurations and dispersed demand

con¯gurations. First, the magnitude of routing costs di®ers between the con¯gurations. Routing

costs tend to be higher when the most frequently visited nodes are far away from the depot, as

is the case in Con¯gurations VC and SP. Hence, the same absolute improvement in objective

appears smaller for dispersed con¯gurations as opposed to the centralized con¯gurations. Second,

the presence of nodes with high visit requirements at the outer periphery requires vehicles to serve

neighborhoods near such nodes on each day of the week. Nodes lying on the path of such routes,

or near the outer periphery, can receive higher levels of service since the marginal cost of including

these nodes on the routes is relatively low (Francis et al. [11] illustrate this principle). In fact,

when the ¯xed portion of the stopping cost ¿ is negligible, nodes receive higher service as long

as the increased bene¯t o®sets the marginal cost, subject to vehicle capacity constraints. Hence,

adding additional °exibility by extending the set of schedule options has less value for the dispersed

con¯gurations as opposed to the centralized con¯gurations.

Including service bene¯t in the objective of the PVRP-SC has the expected e®ect of raising

visit frequency as more schedule options are allowed. The improvement from raising frequencies

ranges from 1.4 - 2.9%. In PVRP-SCrouting solutions, visit frequencies are raised as well in some

instances to increase routing e±ciency. If these changes were rewarded in the objective function,

they would contribute an improvement of 0.6 - 1.6% in Z® (this is not shown in the table since

service bene¯ts in PVRP-SCrouting are not rewarded).

Schedule set A is designed speci¯cally to limit the complexity of driver routes; i.e., drivers

perform at most two di®erent routes. As expected, complexity measures rise when schedule set E

is used. The increase in arrival span ¾ suggests that adding more °exibility in schedule options is

at the expense of consistency in customer visit times. The day-to-day composition of routes has

more variance when more diverse schedule choices are available and hence the number of nodes

to be visited changes from day to day. A similar e®ect corresponds to Á and µ. Further, these

metrics rise with service choice since the number of customers visited each day increases, which

may force vehicles to cover wider areas. When service bene¯t is considered in the objective, the
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metrics increase more since the routes generated are not as e±cient as those created when routing

cost is the only objective.

Finally, solution times for the Tabu Search are sensitive to the size of the schedule set jSj. For

our 200-node data sets, the solution times are found to increase from 168 CPU minutes for jSj = 3

to about 192 CPU minutes for jSj = 10 with a standard deviation of less than 12 minutes across

all instances.

3.4.3 Interaction of service choice and schedule options

The preceding analysis suggests that introducing °exibility in schedule options has an impact on

the objective function, with or without service bene¯t in the objective. Next, we examine the

trade-o®s between °exibility and complexity when increased schedule options and service choice

are considered together. We include crew °exibility to allow the system the °exibility to pick the

best vehicle assignment for each visit to a node.
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Figure 3: Increasing °exibility in node visitation: Traditional city con¯guration

Figures 3 and 4 illustrate how the performance metrics change as both service choice and

schedule option °exibility are introduced for Con¯gurations TC and VC, respectively. The results

for Con¯gurations TCSP and SP (not shown here) lie between the Con¯gurations TC and VC in

terms of changes in operational performance and operational complexity. Hence, Con¯gurations

TC and VC are representative of the extreme conditions of geographic con¯gurations. Along the

horizontal direction in the ¯gures, from left to right, we change the schedule options from A to E;

along the vertical direction, we introduce service choice (PVRP-SC solutions) in the upper row and
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Figure 4: Increasing °exibility in node visitation: Vanishing city con¯guration

restrict service choice (PVRP solutions) in the lower row. Recall that schedule set C has the same

number of schedule options as B, but a wider range of visit requirements. All metrics are measured

with respect to a common base case, the PVRP with schedule set A (lower left corner).

The ¯gures indicate steady improvement in the objective function as schedule option °exibility

is introduced. Improvements in the objective function are accompanied by increases in operational

complexity in most cases. The e®ects are larger for Con¯guration TC than any other con¯guration

as in the previous section. Also, as before, the PVRP with VC con¯guration has the least increase in

complexity measures. Adding three schedules from schedule set D to E results in a 1:4% change in

¢Z on the average, with variance in individual observations ranging from 0% to 4%. The additional

schedule options increase the solution time of the Tabu Search, on average, by 7 minutes.

The rises in crewsize and driver coverage indicate that adding °exibility through service choice

and/or new schedule options a®ects the number of di®erent drivers to train for operations speci¯c

to each customer location. There are also signi¯cant di®erences in the arrival span. While all city

con¯gurations appear to be a®ected, Con¯guration TC, which shows the highest e±ciency gains,

also has the greatest change in arrival span with increased °exibility.

Displaying the metrics for varying levels of schedule options and service choice relative to a

common base case facilitates comparisons of the relative costs and bene¯ts of °exibility levers. Using

Figures 3 and 4, it is possible to compare the relative complexity increases for a given improvement

in the objective function for °exibility in service choice versus °exibility in schedule options. The

¯gures indicate that °exibility in schedule options can produce e±ciency gains comparable to
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service choice with lower rises in complexity. For example, in Con¯guration TC, using service

choice °exibility with schedule set A yields a 5% improvement in the objective function over the

base case with complexity increases between 5% and 10%. Using set E without service choice also

yields an objective function improvement of 5%, but with smaller rises in complexity.

Service providers should evaluate the relative gains from increased operational e±ciency against

operational costs such as driver training and possible customer dissatisfaction. These metrics

provide a way of quantifying the changes. For instance, consider a distribution operation o®ering

schedule set A to customers in a city of Con¯guration VC. If transportation costs are high compared

to the cost of training drivers to visit di®erent customers and regions, then a 5% increase in

operational e±ciency by introducing service choice may justify a 4% increase in average driver

coverage and 8% increase in crewsize. A relative weighting of these metrics is likely to be application

speci¯c depending on the costs associated with increased complexity.

3.4.4 Delivery strategies

The PVRP/PVRP-SC literature assumes that the amount delivered at each customer visit is equal

to the demand accumulated since the last visit. In this section, we explore how °exibility in delivery

amounts can improve operational e±ciency of the PVRP-SC. In order to model this °exibility, we

¯rst look at the way in which demand accumulation is modeled in periodic routing problems.

In the PVRP literature, demand accumulation is modeled as the average accumulation between

visits. In the PVRP-SC model of Francis et al. [11], the accumulation is modeled as the maximum

demand accumulation between visits. With both approximations, the delivery quantities, wsi , can

be determined for node i 2 N and schedule s 2 S, and the day is not needed in the capacity

constraints (1d). The true accumulation includes the day, wsdi , which signi¯cantly increases the

complexity of the model (constraint (1d) in particular) for the exact method of Francis et al. [11].

Using average accumulation may lead to capacity-infeasible solutions if capacity is tight and

the time between visits is not uniform in certain schedules. This approximation is reasonable if at

least one of the following conditions is satis¯ed:

1. Demand at each node does not vary signi¯cantly over the period, and the time between

visits is uniform for all schedules. Further, there is su±cient slack in the vehicle capacity to

accommodate the existing variability.

2. Customers are willing to accept average delivery amounts rather than the requested delivery
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amount (thereby incurring shortages or carrying additional inventory).

Similarly, the maximum accumulation approximation is reasonable when Condition 1 above

holds or if customers are willing to accept more deliveries in excess of the accumulated demand.

Using the maximum accumulation guarantees feasibility but may lead to suboptimal solutions. In

practice, when operating under the maximum accumulation modeling, only the required demand

is delivered, but vehicle capacity is reserved for the maximum accumulation, which is used fully at

least once during the period.

Other solution methods (and in particular our Tabu Search method) may consider the true

demand accumulation between visits, which can incorporate non-uniform separation between visits,

as well as non-stationary demand and service choice.

Delivery °exibility allows the delivery amount to become a decision variable so that e±ciency

is increased. As such, the PVRP-SC begins to resemble the Inventory Routing Problem (IRP), in

which the amount delivered is a separate decision variable. We consider two ways in which the

PVRP-SC can be modeled as a special case of the IRP with deterministic demand. The ¯rst is an

IRP where no shortages are allowed, a zero inventory policy is followed, and there exists a limited

set of visit frequencies. As a result, a vehicle always delivers an amount exactly equal to the demand

accumulated between visits. However, unlike the traditional PVRP-SC, the service bene¯t term

is modeled as the cost of holding inventory between visits rather than as the bene¯t of increased

frequency. The service bene¯t term depends on the demand at the node, as well as the time that

each unit of demand is held. In the second case, we relax the assumptions of a zero inventory policy

and allow shortages. Allowing shortages guarantees feasibility in cases that are not feasible in the

¯rst case. Note that continuous IRP models may choose any amount to be delivered at nodes;

however, we signi¯cantly limit the delivery choices to solve this variation in a reasonable amount

of time using the Tabu Search method. In particular, we allow either the delivery of the average

demand or the true accumulated demand. The maximum-demand strategy is excluded because it

reserves more capacity than required on the vehicle, resulting in less e±cient routing solutions.

Two delivery options are compared to measure the bene¯t of modeling delivery strategy: (1)

no delivery °exibility (cons) { a PVRP-SC in which the service bene¯t is modeled as holding and

shortage cost savings and exactly the true demand is delivered every time; (2) delivery °exibility

(flex) a PVRP-SC in which service bene¯t is modeled as holding and shortage cost savings, and

the system can choose between delivering the average-demand amount or the true-demand amount.

For each node, a cost is assigned to each schedule based on the holding and shortage costs of the
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amount delivered, the demand, and the visit days. We use a holding cost of $0:05 per item per day,

and a shortage cost of $0:1 per item per day.

The Tabu Search is modi¯ed to solve these special cases of the IRP as follows. Without delivery

°exibility, we model jSj schedule options. With delivery °exibility, we create copies of each schedule

for each delivery strategy. In this case, there are two delivery strategies (average amount and

required amount), yielding 2jSj schedule options. Thus, when considering candidate moves in each

Tabu Search iteration, both the frequency and the accumulation option of a candidate schedule

are simultaneously evaluated. We solve the problem for the 200-node, city con¯guration test cases

assuming crew °exibility and schedule set E. The average solution times increases from 194 minutes

for jSj = 10 to about 486 minutes for jSj = 20. While this approach can be used to consider a

wider range of delivery options, the increase in solution time limits the number of options that can

be practically considered.

Table 6 shows the e®ect of adding delivery °exibility on the objective function and the complex-

ity measures. The objective improvements are aggregated over all instances of each con¯guration

and vary slightly by city con¯guration type. However, there exists a wide variance in individual

observations which suggests that the choice of delivery strategy is partially dictated by other factors

such as route design and capacity utilization of vehicles. Nevertheless, the ability to control the

amount of demand delivered is shown to be a useful means of °exibility.

¢Zc;¿ ¢Z® ¢¾ ¢µ ¢Á

TC -4.8% -2.6% 6.8% 2.4% 4.2%

TCSP -4.1% -2.4% 6.4% 2.2% 4.0%

SP -4.0% -2.6% 6.4% 2.6% 4.4%

VC -3.6% -1.8% 6.6% 2.4% 4.0%

Table 6: Impact of introducing delivery °exibility

Overall, for the given inventory costs, adding the delivery strategy °exibility is found to be

bene¯cial. The objective function improves by 2-13% across individual instances when the system

is allowed to choose between delivering the average amount and true amount. These savings are

achieved with changes in delivery quantity for only a small number of nodes. In all cases, fewer than

20 nodes are served using average demand rather than true demand, with the average number of

such nodes ranging between 12 and 20. The resulting change in the objective appears to be partly

due to more e±cient routing and vehicle assignments made possible by the demand adjustments,
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and partly due to the savings in holding/shortage costs. The exact contribution of these two

components to the objective improvements varies widely among instances, even within instances of

the same con¯guration type.

3.4.5 Managerial observations

We make the following managerial observations based on the ¯ndings in this section:

1. Tradeo® between °exibility and complexity. As expected, introducing operational °exibility

increases the operational complexity of the solutions. In most cases, the increase in the

complexity is related to the e±ciency gains obtained; however, certain levers of operational

°exibility (such as crew °exibility) tend to increase complexity without corresponding e±-

ciency gains. The complexity measures facilitate the choice of °exibility levers to maximize

e±ciency gains with allowable complexity increases.

2. Signi¯cance of geographic distribution. In general, the results con¯rm earlier results in Francis

et al. [11] on the signi¯cance of geographic distribution on value of service choice. Further,

the results extend to other °exibility levers as well. The results indicate that introducing

°exibility is more bene¯cial when high frequency nodes are located near the depot (as in

Con¯gurations TC and TCSP).

3. E®ect of crew °exibility. Restricting crew °exibility is often required by customers (e.g.,

inter-library loan application of Francis et al. [11]). It is found to have a limited e®ect on the

objective, which suggests that reducing operational complexity in this way may be desirable.

4 Conclusions and future research

We provide insights from both a managerial and a modeling perspective on the trade-o®s between

operational °exibility and complexity in periodic vehicle routing problems. Speci¯cally, we quantify

the gains from operational °exibility in terms of vehicle routing costs and customer service bene¯ts,

along with the costs of additional complexity in terms of modeling and implementation di±culty.

We identify four levers of operational °exibility { service choice in determining customer visit

frequency, crew °exibility that expands the number of drivers visiting nodes, schedule options

o®ered by the service provider, and the delivery quantity at each visit. We show how these levers

can be modeled and analyze their e®ect on the e±ciency and complexity of resulting solutions.
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We provide three metrics to quantify the operational complexity of the resulting solution {

arrival span, driver coverage, and crewsize. These are the ¯rst known metrics in the literature to

quantify the desirability of routing solutions in a periodic distribution context.

We introduce a Tabu Search method that can incorporate a wide range of °exibility options.

The Tabu Search method obtains solutions within 3% of optimality for test cases from the literature.

We quantify the operational savings from adding °exibility to periodic distribution as a function

of geographic dispersion of nodes using the Tabu Search method.

The complexity measures considered in this paper are either considered endogenously through

variable and parameter de¯nitions or exogenously in post-processing. Future work could focus on

adding complexity measures into the objective function of the PVRP-SC, thereby allowing the

solution method to choose the appropriate balance between complexity and °exibility. In the

routing literature, time windows for node visits have been incorporated with soft penalties for

violations, which could form the basis for adding soft penalties for variations in visit times for

nodes across days in the PVRP-SC. Further, variation in driver routes could be incorporated in the

objective function. Such extensions would involve parametric analysis of the relative weighting of

complexity costs to operational bene¯ts. Further, when the complexity costs are known, we could

determine a frontier of e±cient solutions for di®erent levels of complexity.
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