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We study the classical problem of capacity and flexible technology selection with a newsvendor network

model of resource portfolio investment. The resources differ by their level of flexibility, where “level-k flexibil-

ity” refers to the ability to process k different product types. We present an exact set-theoretic methodology

to analyze newsvendor networks with multiple products and parallel resources. This simple approach is suf-

ficiently powerful to prove that (i) flexibility exhibits decreasing returns and (ii) the optimal portfolio will

invest in at most two, adjacent levels of flexibility in symmetric systems, and to characterize (iii) the optimal

flexibility configuration for asymmetric systems as well.

The optimal flexibility configuration can serve as a theoretical performance benchmark for other config-

urations suggested in the literature. For example, while chaining is not optimal in our setting, the gap is

small and the inclusion of scale economies quickly favors chaining over pairing. We also demonstrate how

this methodology can be applied to other settings such as product substitution and queuing systems with

parameter uncertainty.

1. Introduction and Summary of Results

When a firm produces several products, should different products share resources or should the

firm establish dedicated resources for some of them? The polar extremes of total specialization

and full resource sharing or “pooling” are well studied, but intermediate configurations with par-

tial resource sharing are often more appropriate. We study this classic problem of capacity and

flexible technology selection with a newsvendor network model, introduced by ? and ? as the multi-

dimensional generalization of the familiar two-stage decision problem with recourse in operations

research. In stage 1, the firm invests in a portfolio of different resources to produce N different types
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of products knowing only their demand distribution. In stage 2, product demands are observed

and allocated to the resources to maximize profits.

The resources differ by their technology or level of flexibility which we model as follows. Let

“level-k flexibility” refer to the ability to process k different product types. There are
(

N

k

)

= N !
(N−k)!k!

different resources with level-k flexibility, including N dedicated or specialized resources with k = 1

and one fully flexible resource with k = N . The firm’s capacity or flexibility portfolio (we will use

both terms interchangeably) is denoted by the vector K of the capacities of the 2N − 1 different

resources.

The products have unit shortage penalty costs denoted by pi, i = 1,2, . . . ,N . We first consider

a linear cost structure in capacity size and flexibility level: each unit of capacity of a level-k

flexible resource costs ck = c1(1 + (k − 1)δ), where δ ∈ (0,1) denotes the flexibility premium. The

firm’s objective is to select the capacity portfolio K⋆ that maximizes its expected profits. This is

equivalent to determining the minimal total cost, which is the sum of the expected shortage and

capacity costs.

We present an exact set theoretic methodology and characterize the optimal flexibility configura-

tion for parallel newsvendor networks with N products. Following ?, our methodology expresses the

marginal value of capacity in terms of demand shortage regions. The analysis in that paper, as in

most follow-up work, relies on explicit descriptions of the shortage regions and focuses on only two

dimensions. The novelty in our approach is that we express the marginal value of level-k resources

using a set theoretic approach that does not require an explicit description of these regions. This

abstract, yet simple approach extends to N dimensions. This simple approach is sufficiently power-

ful to prove that (i) flexibility exhibits decreasing returns and (ii) the optimal portfolio will invest

in at most two, adjacent levels of flexibility in symmetric systems, and to characterize (iii) the

optimal flexibility configuration for asymmetric systems as well.

The precise statements of these results are provided in later sections of this paper; here we

illustrate them for a parallel newsvendor network with N = 4 products. A capacity portfolio then

can consist of four dedicated resources, six level-2 resources, four level-3 resources, and one fully
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flexible resource. For expositional simplicity, let us assume here that the demand distribution and

unit shortage penalties are product-type independent, or symmetric. The optimal capacity portfolio

is then shown to be also product-type independent and all level-k flexible resources have the same

capacity K⋆
k . The 15-variable problem thus reduces to one with 4-variables that we determine as

follows:

First, let Ωi denote the set of demand realizations where there is a shortage of dedicated resource i

for a given capacity portfolio K. Then, the expected marginal value of investing additional capacity

in dedicated resource i (beyond that in portfolio K) equals the per unit shortage cost p times

the probability that the realized demand lies in the set Ωi, i.e., pP(Ωi). Now consider a level-2

flexible resource that can process products i and j. Then, one extra unit of its capacity can be

used to decrease the contingent shortage of product i or j. With a common shortage cost, the

marginal value of such a resource is pP(Ωi ∪ Ωj). Furthermore, in a symmetric system we have

that P(Ωi ∪ Ωj) = P(Ω1 ∪ Ω2). In general, the marginal value of a level-k flexible resource in a

symmetric system equals pP(∪k
i=1Ωi). Clearly, as expected, the marginal value increases in the level

of flexibility. More importantly, this increase is strictly concave so that there are decreasing returns

to flexibility in newsvendor networks. Indeed, simple set algebra shows that

pP(Ω1 ∪Ω2 ∪Ω3 ∪Ω4)−pP(Ω1 ∪Ω2 ∪Ω3) < pP(Ω1 ∪Ω2 ∪Ω3)−pP(Ω1 ∪Ω2) < pP(Ω1 ∪Ω2)−pP(Ωi).

The optimality conditions require that the marginal value of any positive investment in a level-

k resource must equal its marginal cost. Given that the marginal value is strictly concave in

the level of flexibility while the marginal cost is linear, this provides a restriction on potential

optimal portfolios. Specifically, for this symmetric system, we obtain that the optimal capacity

portfolio invests in at most two adjacent levels of flexibility. Imagine a graph where product types

are represented by rectangles and resources by circles. An arc from a rectangle to a circle then

represents a possible product-resource assignment; the number of arcs into a circle equals that

resource’s level of flexibility. Our main result can then be graphically illustrated as in Figure ??.

(We use the convention that the numbers in rectangles denote product types, and those in circles
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Figure 1 A graphical representation of the optimality conditions and portfolios for an N = 4 product setting.
The optimal configuration invests in flexibility to match the marginal value with the marginal cost. Depending on
the cost parameters, only one of three configurations can be optimal: the optimal portfolio invests only in
resources with flexibility levels (a) one & two (“tailored pairing”), (b) two & three, or (c) three & four.

represent the products that can be produced by the corresponding resources.) There can only be

3 optimal flexibility configurations in symmetric newsvendor systems with N = 4 products: invest

only in resources with flexibility levels (a) one and two, (b) two and three, or (c) three and four.

The configuration that invests in levels one and two is referred to as “tailored pairing.” In this

configuration, each product can be produced by a pair of level-2 resources, and such configurations

are referred to as “pairing” in ?. The adjective “tailored” refers here to using mostly dedicated

resources to serve the average demand and a small amount of only level-2 flexibility to serve

variability.

Figure ?? further demonstrates the fact that it will be optimal to invest in higher levels of

flexibility only for lower flexibility premiums. We also prove that, as expected, the value of flexibility

decreases as any pairwise demand correlation increases.

We investigate the key drivers of the optimal flexibility configurations using numerical studies.

When the cost of flexibility δ rises, the investment in higher levels of flexibility is substituted for
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lower levels. Interestingly, the associated capacity levels are non-monotone. For example, as δ rises,

the investment in level-4 flexibility falls while the level-3 investment initially rises. When level-

4 capacity reaches zero, level-3 capacity peaks and further falls (and level-2 flexibility rises as a

substitute), as further discussed in Section ??.

Our main results characterize the optimal flexibility configuration which can serve as a theoret-

ical performance benchmark for other configurations suggested in the literature. In particular, the

seminal paper by ? showed that “a little flexibility can achieve almost all the benefits of total flex-

ibility” by using only level-2 flexible resources in a special configuration called chaining. Chaining

represents any flexibility configuration of N level-2 flexible resources that are connected, directly

or indirectly, to all N product types by product-resource assignments. Chaining allows for shift-

ing capacity from products with lower than expected demand to those with higher than expected

demand. Using simulation and providing some analytical justification for the same newsvendor net-

work model as we study, Jordan and Graves demonstrated that the expected shortfall and capacity

utilization of chained level-2 flexible resources is close to the expected shortfall and utilization of

fully flexible resources with the same capacity. In other words, “a little flexibility goes a long way.”

? showed that similar chaining benefits extend to multi-stage systems.

We prove analytically that flexibility exhibits decreasing returns in newsvendor networks. This

provides the general, mathematical confirmation that “a little flexibility goes a long way” and

corroborates the virtues of chaining. At the same time, we also prove that chaining is not optimal

in symmetric newsvendor systems with a linear cost structure and more than 3 products. Indeed, if

the optimal configuration in such systems invests in level-2 flexibility, it must invest equally in all

N(N −1)/2 level-2 flexible resources. That is, each product can then be produced by a pair of level-

2 resources in this pairing configuration. In contrast, chaining uses only N level-2 flexible resources,

or N(N − 3)/2 less than pairing, and hence is sub-optimal for symmetric newsvendor networks.

Figure ?? demonstrates the three chaining configurations possible for N = 4, and the pairing

configuration that invests in all N(N − 1)/2 = 6 resources. Recall, that the adjective “tailoring”

refers to using mostly dedicated resources to serve the average demand and a small amount of
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Figure 2 With N = 4 product types there exists only one tailored pairing configuration but three tailored
chaining configurations.

only level-2 flexibility to serve variability. (Note that with 3 products, chaining and pairing are

identical.)

In practice, capacity investment often enjoys scale economies which induce a firm to invest in

fewer but bigger resources. While general scale economies pose mathematical challenges, we are able

to extend our main analytic result to a setting where a positive capacity investment incurs a fixed

cost. Clearly, with setup costs, the optimal capacity portfolio need no longer be symmetric (not even

in a symmetric system). The contribution of this result is to significantly reduce computational time

in finding the optimal strategy. As expected, our numerical study confirms that scale economies

diminish the practical value of pairing and favor chaining, and increasingly so when the number

of products rises. We also extend our results to a setting where capacity costs are concave in the

level of flexibility. The optimal levels of flexibility increase with increasing concavity or “scope

economies.”
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Our work continues the line of literature on flexible technology, started by ? and followed by ?,

?, and ?, among others. ? and ? add pricing to the flexibility problem. Newsvendor network models

have also been used to study sourcing or input flexibility (e.g., ? and ?); transshipment (e.g., ? and

references therein); and part substitution and commonality (e.g., ?, ?). ? study flexibility strategies

in competitive newsvendor networks. We briefly consider the case of product substitution by the

firm (e.g., ?, ?). We show how the insights and methodology derived in this paper can be extended

to include cases where the firm can satisfy demand by substituting products.

We also relate our findings to recent studies of flexibility in queueing systems, e.g., ?, ?, ?, ?, ?.

In a recent work, ? prove that “a little flexibility is all you need” in symmetric queueing systems.

To be precise, they show that tailored pairing is asymptotically optimal in queuing systems with

large arrival rates. Queueing systems with independent arrival and service times enjoy statistical

pooling that ultimately make variability a second order effect compared to the mean demand. The

resulting asymptotic optimality of tailored pairing agrees with our optimality results here. Indeed,

we show that, if the optimal capacity portfolio invests in dedicated resources, tailored pairing is also

optimal in newsvendor networks. Yet variability can be a first order effect in newsvendor networks

and we show that the optimal flexibility configurations exhibit more richness and can “go beyond”

tailored pairing and invest in higher levels of flexibility.

Realizing that traditional asymptotic queuing analysis relegates uncertainty to a second order

effect, recent studies have investigated queuing systems with arrival rate uncertainty; e.g., ?, ?, and

?. In such queueing systems, capacity decisions reduce to a newsvendor network problem of the

type studied here. This shows that our results also apply to flexibility configurations in queueing

systems.

The remainder of this paper starts with a model description. Section 3 illustrates our approach for

symmetric systems and characterizes the optimal flexibility configuration. The key drivers of that

configuration are investigated with a numerical study in Section 4. Section 5 extends our analytic

results to newsvendor networks with (a) asymmetric demand distributions, (b) scale economies, and

(c) scope economies. We discuss the case of product substitution and the connection of our results
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to queueing systems in Section 6 and present concluding remarks in Section 7. For pedagogical

reasons, the proofs of results in Section 4 are provided in the main text, while those of results in

Sections 5 and 6 (which have the same underlying principles as those in Section 4) and supporting

results are relegated to the Appendix.

2. A Newsvendor Network Model of Flexibility

We consider a multi-dimensional two-stage decision problem with recourse. In stage 1, the firm

invests in a portfolio of different resources to produce N different types of products knowing only

their demand distribution. In stage 2, product demands are observed and allocated to the resources

to maximize profits.

The resources have different levels of flexibility which we model as follows. Let “level-k flexibility”

refer to the ability to process k ∈ {1,2, . . . ,N} different product types. To specify which k product

types a given resource can produce, we refer to that resource by the set of product types F ⊆

{1,2, . . . ,N} it can produce. The cardinality of F thus equals the resource’s level of flexibility. We

assume that each unit of production consumes one unit of capacity, irrespective of the resource and

product, and we denote the maximal number of units that resource F can produce by its capacity

KF . There are
(

N

k

)

= N !
(N−k)!k!

different resources with level-k flexibility, including N dedicated or

specialized resources with k = 1 and one fully flexible resource with k = N . The firm’s capacity or

flexibility portfolio (we will use both terms interchangeably) is denoted by the vector K := {KF :

F ⊆ {1, . . . ,N}} and can comprise of up to
∑N

k=1

(

N

k

)

= 2N − 1 different resources.

We denote the demand for product i by the random variable Di. The product vector D has a

general distribution with probability measure P, and ED will denote the associated expectation

operator. For analytic simplicity, we will assume that the probability density function exists and

is positive over R
N
+ .

The products have unit shortage penalty costs denoted by pi > 0. We first consider a linear cost

structure in capacity size and flexibility level: each unit of capacity of a level-k flexible resource

costs ck = c1(1+ (k− 1)δ), where δ ∈ (0,1) denotes the flexibility premium. Clearly, a fully flexible
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resource would dominate all resources with lower levels of flexibility if δ = 0. Similarly, k dedicated

resources would dominate one level-k flexible resource if δ ≥ 1.

The firm’s objective is to select the capacity portfolio K⋆ that maximizes its expected profits.

This profit maximization problem is equivalent to determining the minimal total cost Π⋆, which is

the sum of the expected shortage and capacity costs, as follows:

Π⋆ = min
K

EDπ(K,D)+
∑

F⊆{1,...,N}

c|F |KF , (1)

where π(K,D) is the optimal contingent operating profit:

π(K,D) = min
x≥0

N
∑

i=1

pi



Di −
∑

{F :i∈F}

xi,F



 (2)

∑

{F :i∈F}

xi,F ≤ Di for all i = 1, . . . ,N, (3)

∑

i∈F

xi,F ≤ KF for all F ⊂ {1, . . . ,N}. (4)

In the second-stage problem (??)–(??), the firm must allocate the chosen capacity portfolio K to

the observed demand vector D to minimize shortage costs. In this allocation problem, xi,F denotes

the amount of product i produced by resource-F . Thus,
∑

{F :i∈F} xi,F denotes the total production

of product i and Di −
∑

{F :i∈F} xi,F represents its shortage. Summing the shortages of all products

yields the total shortfall. This optimization is subject to the usual demand and capacity constraints.

The demand constraints (??) ensure that supply (production) does not exceed the demand for any

product; the capacity constraints (??) reflect that supply cannot exceed capacity.

Linear programming theory shows that the optimal contingent operating profit π(K,D) is jointly

convex in K and D. Furthermore, it also is supermodular in D as we show in the Appendix (cf.

Corollary ??). As a linear continuous superposition, the expected operating profit EDπ(K,D) is

strictly convex in the capacity portfolio K. Hence, the optimal portfolio K⋆ is unique and solves

the necessary and sufficient first order or Karush-Kuhn-Tucker (KKT) conditions:

K⋆ · (c−∇KEDπ(K⋆,D)) = 0 (5)

c≥∇KEDπ(K⋆,D). (6)
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Differentiation and expectation can be interchanged and the optimality conditions simplify to

∇KEDπ(K,D) = ED∇Kπ(K,D) =
∑

j

λ̃jP(Ω̃j(K)), (7)

where {Ω̃j} represents a partition of the demand space such that ∪jΩ̃j = R
N
+ and λ̃j are the constant

Lagrange multipliers of the capacity constraints for D ∈ Ω̃j. (??) can be made rigorous by using

arguments similar to ?, Proposition 2.

Intuitively, the (polyhedral) demand sets Ω̃j correspond to a set of demand samples for which

some resources are capacity constrained. We will refer to these sets as shortage regions and to the

corresponding resources as conditional bottlenecks. Their associated component in the Lagrange

vector λ̃j, that corresponds to the optimal dual vector, is the conditional marginal value of their

capacity. In general, the Lagrange vectors and the domains depend on the capacity portfolio K and

on the relative profitability of products. We observe that any positive component of λj must equal

the shortage penalty of some product pi. Indeed, an ǫ > 0 increase in the capacity of a conditional

bottleneck resource can be used to reduce the shortage of some product i by piǫ (see Lemma ?? in

the Appendix for a formal proof).

In this paper, we use set theory to express the marginal value of a flexible resource in terms of

the shortage regions of the dedicated resources. This allows us to characterize the value of flexible

resources and develop insights into optimal flexibility portfolios.

To illustrate the mode of analysis we begin by analyzing a symmetric system, where the

shortage penalty is the same for all products and denoted by p, and the demand distribution

G(x) = P(D < x) is symmetric in its components, meaning that G(x1, . . . , xi, . . . , xj, . . . , xN) =

G(x1, . . . , xj, . . . , xi, . . . , xN) for any 1 ≤ i < j ≤ N . Henceforth, we shall simply call such distribu-

tions “symmetric,” and we shall generalize to asymmetric demand distributions in Section ??.

The symmetry assumption allows further simplifications. First, any positive components in any

Lagrange multiplier vector λ̃j equal the common shortage penalty p. Further, we will be able to

specify the optimality equations in terms of N shortage regions Ωi, where Ωi is the shortage region

of dedicated resource i. (Formally, it is the set of demand realizations where the dual variable
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Ω̃1

Shortage of product 1

Ω̃2

Shortage of product 2

Ω̃3

Shortage of both products

Ω̃0

Sufficient capacity: All demand is satisfied

K{1}

K{2}

K{1} +K{1,2}

K{2} +K{1,2}

D1

D2

Figure 3 With 2 products, the demand space is partitioned into 4 regions: all demand can be satisfied in Ω̃0,
there is a shortage of only product 1 in Ω̃1 and of only product 2 in Ω̃2, both products may experience shortages
in Ω̃3.

corresponding to resource-{i} equals p. See Definition ?? in the Appendix for further details.) We

will see that these shortage regions Ωi typically are not disjoint and hence differ from the regions

Ω̃j in (??).

3. Optimal Flexibility Portfolios for Symmetric Systems

System symmetry together with the uniqueness of the optimal portfolio K⋆ implies that the optimal

portfolio must also be symmetric and product-type independent. This greatly simplifies the analysis

because we can restrict attention to portfolios of the form (K1,K2, . . . ,KN), where Kk is the

capacity of each of the
(

N

k

)

different resources with level-k flexibility. Thus, instead of having 2N −1

variables, the optimal solution is characterized by only N variables.

Shortage regions and marginal value of dedicated resources. Let Ωi(K) denote the

shortage region for product i under the capacity portfolio K. The marginal value of investing in

dedicated resource i then is pP(Ωi). To better understand the shortage regions, we will illustrate

them for the one and two-product cases.

The single product case (N = 1) is the standard newsvendor problem and the capacity portfolio

consists of only a dedicated resource with capacity K{1}. The resource is a contingent bottleneck
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when D1 > K{1}, so that its shortage region Ω1(K) = {D1 > K{1}}, and the expected marginal

value of capacity is pP(Ω1(K)) = pP(D1 > K{1}).

For the two-product setting (N = 2), for a given capacity vector K, Figure ?? depicts four

mutually exclusive scenarios. Ω̃0 is the scenario where capacity exceeds demand and no product

experiences a shortage. The contingent marginal value of all three capacities is zero. In contrast,

when demand falls in Ω̃1, there is a shortage of product 1, but abundant capacity to meet product

2 demand. Resources-{1} and {1,2} are contingent bottlenecks with marginal value p: an increase

in the capacity of either resource will decrease the product 1 shortfall when demand falls in Ω̃1,

but an increase in resource-{2} capacity would be valueless. Ω̃2 is the analog of scenario Ω̃1 where

product 2 experiences a shortage, but not product 1. Finally, both products experience a shortage

in region Ω̃3 in the sense that an increase in any capacity decreases the total shortfall.

We can combine the above scenarios to obtain the shortage regions as follows: the shortage region

of resource-{1} is Ω1(K) = Ω̃1 ∪ Ω̃3 and the marginal value of dedicated resource 1 equals pP(Ω1).

Similarly, we have Ω2(K) = Ω̃2 ∪ Ω̃3 and the marginal value of dedicated resource 2 equals pP(Ω2).

Characterizing the optimal portfolio. We use the shortage regions of the dedicated resources

to characterize the optimal portfolio. There are two important steps in our approach:

First, we express the marginal value of investing in a level-k > 1 flexible resource in terms of

the shortage regions Ωi(K), as follows. By definition, a marginal unit of a level-2 flexible resource

that can produce products {i, j} is equivalent to a marginal unit of dedicated resource i or j

where the choice of product i or j typically depends on the realized demand. Regardless of the

product produced, the marginal value of level-2 capacity is pP(Ωi ∪ Ωj). Given the symmetry,

pP(Ωi∪Ωj) = pP(Ω1∪Ω2). Similarly, the marginal value of any level-k flexible resource is pP(∪k
i=1Ωi)

(cf. Lemma ?? in the Appendix) and the optimality equations (??)–(??) simplify:

Proposition 1. In a symmetric system, the optimal flexibility configuration K⋆ ≥ 0 solves:

K⋆
k(ck − pP(∪k

i=1Ωi(K
⋆))) = 0 for 1≤ k ≤N, (8)

pP(∪k
i=1Ωi(K

⋆))≤ ck for 1≤ k ≤N. (9)
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Second, we use formal set algebra to establish that the marginal value of level-k flexible capacity

is concave increasing in k. For example, consider a three-product system. Clearly,

P(Ω1)≤ P(Ω1 ∪Ω2)≤ P(Ω1 ∪Ω2 ∪Ω3),

so that the marginal value of a dedicated resource is less than that of a level-2 flexible resource,

which at its turn is less than the marginal value of a fully flexible resource. In addition, the

corresponding increments are decreasing:

0≤ P(Ω1 ∪Ω2 ∪Ω3)−P(Ω1 ∪Ω2)≤ P(Ω1 ∪Ω2)−P(Ω1), (10)

so that the marginal value of capacity is concave increasing in the level of flexibility k. This result

that flexibility exhibits “decreasing returns” generalizes to symmetric newsvendor networks:

Proposition 2 (Decreasing Returns to Flexibility). In a symmetric system, for any

capacity vector K, the marginal value of capacity is concave increasing in the level of flexibility k.

That is, we have

P(∪k
i=1Ωi(K))≤ P(∪k+1

i=1 Ωi(K)) for 1≤ k < N, and (11)

P(∪k+2
i=1 Ωi(K))−P(∪k+1

i=1 Ωi(K))≤ P(∪k+1
i=1 Ωi(K))−P(∪k

i=1Ωi(K)) for 1≤ k < N − 1, (12)

where the inequality is strict if Kk > 0.

Proof. Equation (??) is self-evident. For the second relationship, basic set theory yields that

P(∪k+2
i=1 Ωi) = P(Ωk+2)+ P(∪k+1

i=1 Ωi)−P(Ωk+2 ∩ (∪k+1
i=1 Ωi)) (13)

P(∪k+1
i=1 Ωi) = P(Ωk+1)+ P(∪k

i=1Ωi)−P(Ωk+1 ∩ (∪k
i=1Ωi)). (14)

Given system symmetry, P(Ωk+2) = P(Ωk+1) and P(Ωk+1 ∩ (∪k
i=1Ωi)) = P(Ωk+2 ∩ (∪k

i=1Ωi)). The

observation that P(Ωk+2 ∩ (∪k
i=1Ωi)) ≤ P(Ωk+2 ∩ (∪k+1

i=1 Ωi)) yields (??). Notice that for any i, j,

Ωi∩Ωj cannot be a null set for any finite capacity portfolio because there will be some high demands

exceeding the overall capacity. A similar argument yields that if Kk > 0, then there exists a set
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of demand realizations with positive probability A such that A⊆Ωk+2 ∩Ωk+1 but A∩ (Ωk+2 ∩Ωi)

is empty for all i ≤ k, which yields P(Ωk+2 ∩ (∪k
i=1Ωi)) < P(Ωk+2 ∩ (∪k+1

i=1 Ωi)) (the argument is

analogous to that in the proof of the more general Proposition ??, and is omitted). ¤

The optimal investment problem can be graphically represented as in Figure ??. The marginal

value of capacity is concave and increasing in the level of flexibility k, and strictly concave when

Kk′ > 0 for some 1 ≤ k′ < N − 1, while the marginal cost of capacity is linearly increasing in k.

Thus, both can be equal for at most two levels of flexibility which then must be adjacent. This

yields our main result:

Proposition 3. In a symmetric system, the optimal flexibility portfolio invests in at most two

levels of flexibility. These two levels are always adjacent. Further, it is never optimal to invest in

the fully flexible resource alone: There exists a k ∈ {2, . . . ,N} such that

K⋆ = (0, . . . ,0,K⋆
k−1,K

⋆
k ,0, . . . ,0).

If K⋆
N > 0, then we must also have K⋆

N−1 > 0.

Proof. Suppose K⋆
k′ > 0 for some 1≤ k′ < N . Then, flexibility has strictly decreasing returns (cf.

Proposition ??). Combining this with the linear cost of flexibility, the result follows immediately.

Now, consider the case Kk′ = 0 for all 1 ≤ k′ < N . Then, all shortage regions are equal: for any

dedicated resource i, its shortage region is Ωi = {∑N

j=1 Dj > KN} and the marginal value of any

level-k resource is independent of k. However, as the cost of capacity is strictly increasing in

the amount of flexibility, this portfolio cannot satisfy the KKT conditions, and hence cannot be

optimal. ¤

The above proposition proves that the optimal flexibility portfolio invests in at most two, adjacent

levels of flexibility. This implies that there are only N − 1 optimal flexibility configurations in

a symmetric newsvendor network with N products. It is possible that an optimal configuration

invests in no resources, or in only one level of flexibility, but this cannot be the fully flexible

resource. For example, consider a four-product setting where the capacity portfolio can consist of
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four dedicated resources, six level-2 resources, four level-3 resources, and one fully flexible resource.

Proposition ?? implies that there are only three optimal flexibility configurations that invest in

flexibility levels 1 and 2 (that is, tailored pairing as shown in panel (a) in Figure ??), levels 2 and

3 (panel (b)), or levels 3 and 4 (panel (c)).

If it is optimal to invest in dedicated resources, we immediately obtain the optimality of tailored

pairing.

Corollary 1 (Optimality of tailored pairing). If the optimal flexibility portfolio for a

symmetric system invests in dedicated resources, then there will be no investment in level-k > 2

flexible resources.

Given that for N = 3, pairing is equivalent to chaining, we establish that tailored chaining then

is optimal for 3 product systems. Recall that, as discussed in the introduction, for N > 3 tailored

chaining is an asymmetric configuration and therefore suboptimal in our setting. With economies

of scale, however, chaining quickly becomes more attractive than pairing, as we shall discuss in

Section ??.

While we have characterized the structure of the optimal flexibility configuration, determining

the actual capacity levels typically is done numerically. Given that the optimal solution invests

at most in two consecutive levels of flexibility, one computational strategy to solve the problem is

to restrict the optimization over two adjacent levels of flexibility. That is, we optimize (??) over

capacity portfolios of the form {0, . . . ,0,Kk−1,Kk,0, . . . ,0}, where 1 < k ≤N . Note that there are

N − 1 such restrictions. If we find a solution to one of these restrictions with K⋆
k−1,K

⋆
k > 0, the

fact that the marginal value of an increase in flexibility is decreasing, along with the fact that the

KKT conditions uniquely characterize the optimal solution, immediately implies that it cannot be

optimal to invest in flexibility levels other than k − 1 and k in the unrestricted problem. That is,

the optimal capacity portfolio is in fact {0, . . . ,0,K⋆
k−1,K

⋆
k ,0, . . . ,0}.

Next we will investigate the key drivers of the optimal flexibility configuration. It will be useful to

quantify the value of flexibility as follows. Let Πd denote the optimal total cost when only dedicated
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resources can be used. Πd thus is the cost of a zero-flexibility strategy. The value of flexibility then

is the relative decrease in cost when using the optimal flexibility strategy:

Value of Flexibility V ⋆ =
Πd −Π⋆

Πd

.

We expect that the system performance will deteriorate as demand is more variable or more

correlated. Indeed, given that π(K,D) is supermodular in D (cf. Corollary ?? in the Appendix),

Proposition 3 in ? yields:

Proposition 4. Let D be normally distributed with any mean vector µ and covariance matrix Σ.

The optimal costs Π⋆ and Πd are increasing in any (co)variance term. Given that Πd is independent

of correlation, the value of flexibility is decreasing in any pairwise demand correlation.

We will illustrate this general property with a numerical study in the next section.

4. Key Drivers of the Optimal Flexibility Configuration

In this section, we study how the structure of the optimal capacity portfolio depends on model

parameters via a numerical study for N = 4 products. In our first study, the demand for each

product is uniformly distributed on the interval [0,2] and is independent of the demand for other

products. In addition to unit mean demand, we normalize the shortage cost to p = 1 and fix the

marginal cost of level-1 resources at c1 = 0.9. As a benchmark, it is useful to consider the optimal

no-flexibility strategy which would invest in 4 specialized resources, each having a 90% shortage

probability. Thus each optimal dedicated capacity is 0.2 with a capacity cost of 0.2 × 0.9 = 0.18

and an expected shortage cost of 90%× (.9 units short on average)× 1 = 0.81. Summing the total

capacity cost of 0.72 and the total shortage cost of 3.24 yields a total cost of 3.96 for the optimal

zero-flexibility strategy, which must be an upper bound for the flexible configurations.

4.1. The substitution impact of the flexibility cost premium δ

As the marginal cost of flexibility increases, we expect to invest less in higher levels of flexibility

and the total cost to rise. This is confirmed by Figure ?? that shows the optimal configuration
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and cost as a function of the flexibility premium δ. The lower panel shows the optimal level of

investment in each level of flexibility as a function of the flexibility premium.

When flexibility is almost costless (δ near 0), the optimal portfolio invests mainly in full flex-

ibility and a small level of level-3 resources as expected. As the premium increases, the optimal

portfolio “rebalances” its investment by reducing the fully flexible capacity and increasing the

level-3 capacity. At a premium around 0.003, the optimal investment in the fully flexible resource is

zero and the flexibility configuration changes towards level-2 and 3. As the premium increases, the

portfolio again rebalances by substituting the higher level flexible capacity for lower level flexible

capacity until the next flexibility cost threshold of δ = 0.032 is reached and the optimal configura-

tion changes again to a lower level of flexibility. This substitution repeats itself until δ = 0.1 beyond

which point a no-flexibility configuration is optimal.

A similar substitution pattern was proved in ?, Prop. 3 for a two-product system where the

substitution towards the dedicated capacity was monotone. With more products, the capacity levels

are not monotone in the flexibility cost premium, but the substitution is always from a higher level

of flexibility to a lower level. Indeed, the capacity investments in level-2 and level-3 resources rise

and then fall as the flexibility cost premium δ increases. Furthermore, the investment in flexibility

level-k peaks exactly when the investment in level-(k +1) first reaches zero.

Figure ?? shows the decomposition of the total optimal cost into capacity and shortage costs.

As the flexibility premium increases, there is lower investment in flexible capacity and the shortage

cost of lost demand increases. It is worth noting that the change in the cost components over the

range of the premium is about 50− 100% as opposed to the total cost which only varies about 5%

for the chosen parameter values.

4.2. The normal versus the uniform distribution

Given that the newsvendor optimality conditions involve the entire demand distribution, we expect

the functional form of the demand distribution to affect the optimal flexibility configuration. This

is indeed observed when we repeat our first study but only replace the uniform demand distribution
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Figure 4 Optimal configurations, cost and capacities vs. the flexibility premium for demand uniformly
distributed on [0,2].

with a normal demand distribution with the same mean of 1 and standard deviation σ = 0.58.

(We truncate the normal distribution to eliminate negative demand values.) Figure ?? shows the

optimal cost as a function of the flexibility premium. Investing in flexibility levels-1 and 2 (i.e.,

tailored pairing) is optimal for δ ∈ [0.01,0.1], which is larger than the region [0.032,0.1] for the

uniform distribution (see Figure ??). Further, the region where it is optimal to invest in levels-3

and 4 is now too small to discern.

Summarizing, even when the first two moments are matched, the normal distribution seems to

favor the lower levels of flexibility of the tailored pairing configuration compared to the uniform
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mean and standard deviation σ leads to optimality of lower levels of flexibility (a). Tailored pairing is always
optimal when the variability decreases (b), or when the cost of dedicated resources decreases (c).

distribution. This effect is even magnified when we lower the demand variability or the cost of

dedicated capacity, as shown in Figures ?? and ??. Panel (b) lowers the demand standard deviation
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from 0.58 to 0.3. Tailored pairing is now optimal for all discernible value of the flexibility premium.

Panel (c) lowers the cost of dedicated capacity from c1 = 0.9 to 0.25, which leads to a similar

observation. These observations suggest that tailored pairing is a desirable flexibility configuration

for most reasonable cases of cost parameters and demand variability. Higher levels of flexibility

will be valuable only with high demand variability or a high relative cost of dedicated capacity

(compared to the penalty cost).

4.3. The impact of demand variability and correlation on the value of flexibility

Figure ?? shows the value of flexibility for our first study with normal demand. The plot shows

the value as a function of the cost of flexibility and as a function of the coefficient of variation of

the demand distribution (which equals the standard deviation given that the mean is 1). Tailored

pairing was the optimal flexibility configuration for all investigated parameter values. As expected,

the value of flexibility increases as the demand variability increases. Note that this does not follow

from Proposition ?? as both Π⋆ and Πd are affected by variance. The numerical finding implies

that, as expected, Π⋆ is less affected by the variance due to the pooling benefits of flexibility. Even

with a relatively low coefficient of variation of 0.15, the maximal value of flexibility is about 6%.

This figure increases to 20% when the coefficient of variation increases to 0.58. As expected, the

value of flexibility decreases in the relative cost of flexibility δ. Notice that the threshold flexibility

premium beyond which there is no investment in flexibility is also increasing in variability.

Next, we study the impact of correlation. We do so by varying the pairwise correlation coeffi-

cient ρ over the interval [−1/3,1].1 Figure ?? verifies that the value of flexibility decreases as the

correlation coefficient ρ increases, as proved in Proposition ??.

5. Extensions: Asymmetric Products, Economies of Scale and Scope
5.1. Asymmetric products

In this section, we consider products with potentially different demand distributions and financial

parameters, and prove that our main results (Proposition ?? and Corollary ??) continue to hold

1 For values of ρ < −1/3, the covariance matrix is no longer positive semi-definite. Indeed, one cannot have four
products with perfectly negatively pairwise correlations.
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Figure 7 The value of flexibility increases when the demand variability increases but decreases when the
correlation between the different product demands increases.

in a slightly generalized manner. Obviously, the optimal capacity portfolio K⋆ will no longer be

symmetric and we will specify it as described in Section ??. In particular, the portfolio K now

consists of the capacity of resource-F for all F ⊆ {1,2 . . . ,N}, where F denotes the set of products

that can be processed by resource-F . Note that now different resources with the same level of

flexibility can have different capacities depending on the products they can process. This asym-

metry in the solution increases the number of candidate flexibility configurations (measured as

the number of product-resource allocation graphs) from 2N to 22N−1 configurations. This doubly

exponential relationship is so strong that even small problems quickly become computationally

infeasible. For example, with only 4 products, there can only be 16 candidate flexibility configura-

tions with demand symmetry. However, with general demand distributions the number of candidate

configurations increases to 32,768. Thus, this problem is much more complex than with symmetric

demand.

As before, our solution approach follows two key steps. First, we describe the marginal value of

a flexible resource F in terms of only the shortage regions. Second, we prove that the marginal

value of a resource is concave increasing in the level of flexibility. However, given the asymmetry in

the products, we need to modify our approach slightly. In particular, to characterize the marginal

value of a resource, we must know the product type that benefits from additional capacity as

well as the shortage region. Thus, we refine the original N shortage regions into N ×N shortage
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regions, depending on the product type benefitting from additional capacity in the resources. Ωi,j

for i, j = 1, . . . ,N denotes the region where there is a shortage of product j due to insufficient

capacity of resource-{i}. Indeed, in a parallel network, an infinitesimal increase in the capacity of

resource-{i} reduces the shortage of product j by the same amount for demand realizations that

lie in Ωi,j. In the following, we assume that the products are labeled in decreasing order of shortage

penalty costs, i.e., p1 ≥ p2 ≥ . . .≥ pN ≥ pN+1 ≡ 0.

Using the shortage regions, we can thus compute the marginal value of a dedicated resource-{i}

as:

V ({i}) =
N

∑

k=1

pkP(Ωi,k) =
N

∑

k=1

(pk − pk+1)P(∪k
j=1Ωi,j).

The second equality follows by noting that we first attribute the lowest shortage penalty pN to the

demand realizations that lie in the shortage region of at least one product, i.e., the set ∪N
j=1Ωi,j.

We then add the incremental benefit (pN−1 − pN) over the demand realization which lie in the

shortage regions of at least one of the products {1,2, . . . ,N − 1}. We continue in this manner until

all the shortage penalty costs are accounted for. Extending this logic to a resource-F , we obtain

its marginal value

V (F ) =
N

∑

k=1

(pk − pk+1)P(∪k
j=1 ∪i∈F Ωi,j).

Shortage regions in a 2-product setting. For illustration we consider the case N = 2, which is

studied in ?. Figure ?? displays the five mutually exclusive scenarios analogous to Figure ?? for a

capacity portfolio K. The main differences are that as p1 ≥ p2, the scenario Ω̃3 can be subdivided

into two further regions Ω̃3,a, in which any increase in capacity is allocated to product 2, and Ω̃3,b,

in which the additional capacity is allocated to product 1. Thus, we obtain our shortage regions

Ω1,1 = Ω̃1 ∪ Ω̃3, Ω1,2 = Ω̃3,a, Ω2,1 = {} and Ω2,2 = Ω̃2 ∪ Ω̃3,a ∪ Ω̃3,b. Then, using the above analysis,

the marginal values for the three resources equals

V ({1}) = p2P(Ω̃1 ∪ Ω̃3,a ∪ Ω̃3,b)+ (p1 − p2)P(Ω̃1 ∪ Ω̃3,b)
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Figure 8 With 2 products such that p1 > p2, the demand space is partitioned into 5 regions.

= p1P(Ω̃1 ∪ Ω̃3,b)+ p2P(Ω̃3,a),

V ({2}) = p2P(Ω̃2 ∪ Ω̃3,a ∪ Ω̃3,b),

V ({1,2}) = p2P(Ω̃1 ∪ Ω̃2 ∪ Ω̃3,a ∪ Ω̃3,b)+ (p1 − p2)P(Ω̃1 ∪ Ω̃3,b)

= p1P(Ω̃1 ∪ Ω̃3,b)+ p2P(Ω̃2 ∪ Ω̃3,a).

These expressions are identical to those in ?. The decreasing returns to flexibility result we obtain

in this asymmetric setting is slightly different from before in the sense that it is product specific:

given a resource F , the marginal value of increasing flexibility by adding a product r /∈ F decreases

in the cardinality of F :

Proposition 5 (Decreasing Returns to Flexibility). For any resource F ⊆ {1, . . . ,N} in

a capacity portfolio K and any products q, r /∈F , we have

V (F ∪{q, r})−V (F ∪{q})≤ V (F ∪{r})−V (F ). (15)

Further, the inequality is strict if KF > 0.

Given the key result that the marginal value of flexibility remains concave increasing, our main

result continues to hold but becomes product specific:
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Proposition 6. With a general demand distribution, the optimal flexibility portfolio is such

that for any two resources-F and F ′ it invests in, if F ⊂ F ′, then F and F ′ must be at adjacent

levels, i.e., |F ′|= |F |+1.

This result leads to a significant reduction in the number of configurations that needs to be con-

sidered. For example, in a 4-product system, we only need to consider 2,256 configurations out of

a total of 32,768. Proposition ?? immediately leads to the following result that demonstrates the

optimality of tailored pairing portfolios.

Corollary 2 (Optimality of tailored pairing).

1. If the optimal portfolio invests in a dedicated resource for a product, then there will be no

investment in level-k > 2 resources to process this product.

2. Thus, if the optimal portfolio invests in dedicated resources for all products, there will be no

investment in any level-k > 2 resource.

CV of Product 4 Flexibility premium Optimal Cost Optimality gap
(δ) Heuristic 1 Heuristic 2

0.1 1.2 0.83% 1.67%
3% 0.3 1.25 0.78% 1.59%

0.5 1.28 0% 0.78%
0.1 1.21 0.83% 2.48%

6% 0.3 1.26 0.79% 1.60%
0.5 1.29 0% 0.78%
0.1 1.22 2.46% 3.28%

15% 0.3 1.28 0.80% 3.13%
0.5 1.31 0.76% 1.53%

Table 1 Benchmarking two intuitive heuristics using the optimal solution: the tables show the optimality gap
of the two heuristics for different flexibility premiums and coefficient of variability of product 4 when the cost of
dedicated capacity c = 0.25.

5.1.1. A numerical example with two groups of products: benchmarking heuristics

The above derived properties facilitate computing the optimal capacity portfolio, which can serve

as a benchmark to evaluate heuristics. We demonstrate this by considering a 4-product example.

We divide these product into two groups: Group A consists of three products with each having

i.i.d demand which is normally distributed with mean 1, and coefficient of variation 30%; Group B
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consists of the only one product and has normally distributed demand with mean 1 and coefficient

of variation of 3% (we also consider the cases where the coefficient of variation is 6% and 15%). The

unit shortage penalty cost of all products is set to 1. The dedicated capacity costs 0.25 per unit. We

consider three cases for the flexibility premium, namely, δ = 0.1,0.3,0.5. For this 4 product example,

we use Proposition ?? to reduce the candidate portfolios and numerically compute the optimal

capacity levels. Then, we use this optimal cost to benchmark two heuristics. Both heuristics develop

capacity prescriptions by treating the two groups of products separately. Heuristic 1, prescribes the

optimal capacity portfolio given this restriction, while Heuristic 2 prescribes the optimal capacity

portfolio with the additional restriction that only levels-1 and 2 resources are utilized, i.e., this is the

best tailored chaining portfolio. Table ?? displays the results. Note that both the heuristic perform

exceptionally well, and as expected the performance deteriorates as the variability of product 4

increases.

5.2. Economies of scale: non-linear capacity sizing cost structure

Our theoretical analysis so far has assumed that the investment cost CF (KF ) for resource-F is

linear in its capacity size KF . In practice, investment costs often exhibit scale economies, meaning

that one resource with capacity 2KF is cheaper than two resources each having capacity KF .

Clearly, scale economies induce a firm to invest in fewer but bigger resources. Mathematically, scale

economies imply that the investment cost CF (KF ) is concave in the capacity size KF . Unfortunately,

the capacity optimization problem then is no longer guaranteed to be convex and the first order

conditions are no longer sufficient. In this section, we generalize our analysis to a particular but

important form of scale economies where any positive investment incurs a fixed setup cost that

may depend on the resource’s level of flexibility, while marginal cost of capacity remains constant.

Specifically, there are N positive setup costs sk > 0 and the investment cost CF (KF ) for resource-F

becomes

CF (KF ) = s|F |1{KF >0} + c|F |KF for KF ≥ 0.

Including fixed costs results in a much harder combinatorial problem where we first must decide

which resources to invest in, and then solve our earlier optimization problem (??) restricted to
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Figure 9 The optimal capacity portfolio as a function of the setup cost. For no setup costs, tailored pairing
(which is equivalent to tailored chaining) is optimal. As the setup cost increases, the optimal portfolio consists of
fewer resources. For large enough setup costs, investing in the fully flexible resource alone is optimal.

these resources. Note that with fixed cost, the optimal capacity portfolio for even a symmetric

system is no longer guaranteed to be symmetric. Fortunately, as the marginal cost of capacity

remains linear once the setup cost has been incurred, our main result continues to hold in slightly

modified form and allows us to reduce the computational complexity:

Proposition 7. With general demand distribution and setup costs, the optimal flexibility port-

folio is such that for any three resources-F , F ′ and F ′′ it invests in, we cannot have F ⊂ F ′ ⊂ F ′′.

Thus, the main result that only two levels of flexibility should be invested in per product is

robust to the addition of setup costs, but these two levels need no longer be adjacent. Nevertheless,

this result still leads to a significant reduction in the number of configurations that needs to be

considered. For example, in a 4-product system, we only need to consider 3,771 configurations

out of a total of 32,768. Unfortunately, our method does not allow a finer characterization of the

optimal portfolio in this setting, and we thus resort to two numerical studies to understand the

effect of setup costs.

First, we consider a 3-product symmetric system with common setup costs for all levels of

flexibility: s1 = s2 = s3 ≡ s. The demand for the products is independent and normally distributed

with unit mean and standard deviation σ = 0.3. We fix p = 1, c1 = 0.25 and the flexibility premium

δ = 0.25 and study the optimal portfolio as the setup cost s varies. Figure ?? shows that the optimal

configuration is tailored chaining, which is equivalent to tailored pairing for N = 3, without fixed
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setup costs. The regions show which configuration dominates the other two.

costs (s = 0). As s increases the number of resources in the optimal portfolio begins to decrease,

as expected. For sufficiently large setup costs, the scale economies are so high that the optimal

portfolio invests only in the fully flexible resource. Notice that for s/c1 ∈ [0.05,0.13], the optimal

configuration invests in level-1 and fully flexible resources, demonstrating that adjacency is no

longer optimal under economies of scale. Note that due to economies of scale, one can also obtain

non-symmetric configurations to be optimal as well. For instance, when s/c1 ∈ [0.03,0.05], the

optimal configuration invests in two out of the three level-2 flexible resources.

Our second study investigates the relative performance of three flexibility configurations that

have been studied in the literature under scale economies: tailored pairing, tailored chaining, and

the fully flexible configuration. We consider symmetric systems with N = 3,4, and 5 products. All

other parameters are the same as in the first study. Figure ?? shows the regions where each config-

uration dominates the other two as a function of the number of products N (on the horizontal axis)

and the setup cost s (on the vertical axis). For s = 0, tailored pairing is the optimal configuration

and dominates tailored chaining and full flexibility. As the setup costs increase, tailored chain-

ing becomes more cost-effective than tailored pairing because it uses N(N − 3)/2 fewer resources.

Finally, for large setup costs, full flexibility dominates. Notice that the region where tailored chain-

ing dominates grows as the number of products N increases: chaining saves on increasingly more
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resources over pairing (explaining the downward sloping boundary between the two) and full flex-

ibility becomes increasingly more expensive than level-2 flexibility (explaining the upward sloping

boundary). This provides additional evidence of the attractiveness of tailored chaining in practice.

5.3. Economies of scope: non-linear flexibility cost structure

Our main results (Proposition ?? and Corollary ??) require capacity costs to be affine in the level of

flexibility. Assuming that the cost of one unit of capacity of a level-k resource is ck = c1 [1+ δ(k− 1)]

means that the marginal cost of flexibility is constant and equal to δ. Remarkably, under this affine

cost structure, the results hold independent of the magnitude of δ, as long as it is positive. In

this section, we investigate the robustness of our result for non-affine flexibility cost structures.

Clearly, when the capacity cost is convex in the level of flexibility (ck > ck−1 + δc1), higher levels

of flexibility become even less attractive and our main result holds. So let us investigate how the

optimal flexibility configuration changes when there are economies of scope so that the marginal

cost of flexibility is concave increasing in the level of flexibility.
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Figure 11 Our main result holds even when the cost structure is fairly concave in flexibility. The figure shows
the affine cost structure (dashed lines) that is assumed for our main analytic result for N=4 and when c1 = 0.25
and δ2 takes on three values: 0.1,0.5,0.75. The solid lines show the corresponding maximal concavity in flexibility
costs for which tailored pairing continues to be optimal.

We established earlier that the marginal value of flexibility is concave increasing in the level of

flexibility k. If now the marginal cost is concave increasing as well, the optimal solution depends

on the relative curvature of the two curves: with slightly concave cost, our main result continues to
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hold. As economies of scope increase, the curvature increases and the optimal levels of flexibility

increase. Eventually, investment in only the fully flexible resource becomes optimal.

Noting that for most reasonable parameters, tailored pairing is the optimal configuration, we

investigate how concave the flexibility cost structure can be for tailored pairing to remain optimal.

Let δk denote the marginal cost to increase the level of flexibility of one capacity unit from level

k−1 to k. Then, ck = c1

[

1+
∑k

j=2 δj

]

. We perform a numerical study in a 4-product setting where

the demand for each product is normally distributed with mean one and variance 0.32, and is

independent of the demand of other products (ρ = 0). We set c1 = 0.25 and consider some fixed

values of δ2 = 0.1,0.5, and 0.75. At these cost values, under the affine cost structure, tailored

pairing is the optimal portfolio. For each fixed value of δ2, we solve for the smallest marginal cost of

flexibility values δ3 and δ4 for which it remains optimal not to invest in level-k > 2 flexibility. The

results are displayed in Figure ??. Notice that our main result continues to hold for any concave

flexibility cost structure above the solid frontiers. This suggests our results are robust to the cost

structure choice to some extent.

6. Other Applications: Substitution and Queueing

In this section, we demonstrate how the methods we have developed can be applied to characterize

optimal flexibility portfolios in other systems beyond the models considered thus far. In Section ??,

we add the feature of product substitution to our model and characterize the optimal portfolio,

while in Section ??, we consider the case of flexible make-to-order queueing systems with dynamic

customer arrivals and stochastic production times.

6.1. Product substitution

We demonstrate how our methodology can be used to handle the case of product substitution.

Consider the case where products are vertically differentiated with pi ≥ pi+1 for i = 1,2, . . . ,N − 1,

and product i can be substituted for i + 1. We assume that each substitution entails a cost of

s, with s < pN . (This is similar to the model in ?, but with a single level of downward product

substitution and flexible capacity portfolio.) In this case, the firm’s optimization problem is
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Π⋆ = min
K

EDπ(K,D)+
∑

F⊆{1,2,...,N}

cF KF , (16)

where π(K,D) is the optimal contingent operating profit:

π(K,D) = min
x,y≥0

N
∑

i=1



pi



Di −
∑

{F :i∈F}

xi,F −
∑

{F :i∈S(F )}

yi,S(F )



 + s
∑

{F :i∈S(F )}

yi,S(F )



 (17)

s.t.
∑

{F :i∈F}

xi,F +
∑

{F :i∈S(F )}

yi,S(F ) ≤Di (18)

∑

i∈F

xi,F +
∑

i∈S(F )

yi,S(F ) ≤KF . (19)

For mathematical convenience we assume pN > p2 − s, so that any available capacity is first used

to satisfy direct customer demand, before any substitution attempts to meet excess demand.

As before, we let Ωi,j denote the shortage region of resource-i for product j. Considering resource-

{i}, its marginal value consists of two components: (a) the value from direct consumption which

equals VD({i}) =
∑N

j=1 pjP(Ωi,j); and (b) the value from substitution which is realized only if there

is no value from direct consumption, and equals VS({i}) =
∑N

j=1(pj − s)P(Ωi+1,j \∪N
j=1Ωi,j). (Note

that substitution essentially transforms a unit of resource-{i} into that of resource-{i + 1} with a

cost of s.) Thus, we obtain the marginal value of resource-{i} is

V ({i}) = VD({i})+VS({i}) =
N

∑

j=1

pjP(Ωi,j)+
N

∑

j=1

(pj − s)P(Ωi+1,j \∪N
j=1Ωi,j).

Similarly, we obtain the marginal value of resource-F ,

V (F ) =
N

∑

k=1

(pk − pk+1)P(∪k
j=1 ∪i∈F Ωi,j)+

N
∑

j=1

(pj − s)P(∪i∈F

(

Ωi+1,j \∪N
j=1Ωi,j

)

).

Using this characterization of marginal value of the various resources, we obtain that flexibility

once again has diminishing returns.

Proposition 8. For a system with downward product substitution, flexibility continues to exhibit

diminishing returns. That is, for F ⊆ {1,2, . . . ,N} and q, r /∈F , we have

V (F ∪{q, r})−V (F ∪{q})≤ V (F ∪{r})−V (F ).

Further, the inequality is strict if KF > 0.
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Given that our key result that the marginal value of flexibility remains concave increasing, our

main result continues to hold and remains identical to Proposition ??.

Proposition 9. For asymmetric products with downward substitution, if the optimal flexibility

portfolio contains two resources-F and F ′ with F ⊂ F ′, then F and F ′ must be at adjacent levels,

i.e., |F ′|= |F |+1.

Thus, the set theoretic methodology extends to this setting with substitution, and we obtain

similar results for the optimal flexibility portfolio. That is, if the firm optimizes on its capacity

portfolio, it should invest only in adjacent flexible resources. The purpose of this section was to

demonstrate this robustness via an illustration considering only “one-step” downward product

substitution. However, the method described can be extended to consider the case of general

substitutions.

6.2. Flexible queuing systems

Flexibility in services modeled as queuing systems has received ample attention. Two connections

are worthwhile making. First, consider traditional queuing systems with known arrival rates. The

recent work by ? (henceforth abbreviated as BRV) proves that tailored pairing is the asymptotically

optimal flexibility configuration in symmetric queuing systems where the known arrival rate λ →

∞. A numerical study suggests that a similar observation holds in asymmetric settings. As we

shall explain next, the traditional assumptions that the mean inter-arrival times are known is not

innocuous. Statistical pooling implies that the variance of the stationary queue count process is

of a smaller order, actually O(
√

λ), than the arrival rate. Consequently, BRV prove that economic

optimization leads to a portfolio investing mostly in dedicated capacity to serve the base demand

λ and only in a small amount O(
√

λ) of minimal level-2 flexibility to serve the variable demand.

This finding that “a little flexibility is all you need” is consistent with our results for newsvendor

systems where investing in dedicated resources leads to optimality of tailored pairing portfolios.

Yet, the optimal configurations in newsvendor systems are richer and go beyond tailored chaining

and pairing.
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Realizing that typical asymptotic queuing analysis relegates uncertainty to a second order effect,

recent studies have investigated queuing systems with arrival rate uncertainty; e.g., ? and ?. When

the first moment is uncertain, variability is elevated to a first-order phenomenon and capacity

decisions asymptotically reduce to a newsvendor network problem of the type studied here. To be

precise, consider a queuing system where N customer classes can be served by resources that differ

in their level of flexibility. As before, there are 2N − 1 different resources or pools of servers. A

server pool that can process customers of classes F ⊆ {1, . . . ,N} is referred to as pool-F . Assuming

that all servers process work at a unit, deterministic rate, the capacity portfolio can be denoted

by K = {KF : F ⊆ {1, . . . ,N}}, where KF is the number of servers in pool-F .

Customers of class i arrive according to a Poisson process with rate Λi, which is a random vari-

able; arrival rates can be correlated across customer classes. Class i customers have exponentially

distributed services requirements with mean 1/µ; that is, analogous to our newsvendor model, cus-

tomers have identical service requirements. Customers of any given class will abandon their queue

if forced to wait too long for the commencement of service. Specifically, each class i customer is

endowed with an exponentially distributed “impatience” random variable with mean 1/γi, inde-

pendent of the impatience random variables characterizing other customers, and independent of

service times and arrival processes.

Similar to before, each level-k server costs ck per unit time and each customer abandonment

costs p. The firm’s optimization problem is to select the optimal capacity portfolio to minimize the

average system cost rate, which includes cost of capacity and cost of customer abandonment.

With large arrival rates, the asymptotically optimal portfolio selection entails solving a “higher

level” problem that ignores the lower level queueing. This higher level problem is the fluid approx-

imation to the actual system and is exactly our newsvendor network problem (??)–(??), where

Di is replaced by the uncertain arrival rate Λi. ?? show that the newsvendor network solution

is asymptotically optimal in a very strong sense: not only does its relative error with the exactly

optimal capacity portfolio tend to zero as EΛ → ∞, its absolute error does not grow with the
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arrival rate. This makes the newsvendor network solution, for all practical purposes, an optimal

prescription to the queuing system if arrival rates are uncertain.

Given the equivalence between the asymptotic optimization problem of queuing systems with

uncertain arrival rates and our newsvendor network problem, Proposition ?? holds here as well.

Thus, the asymptotically optimal flexibility portfolio will invest in resources at adjacent levels.

Further, analogous to Corollary ??, if the asymptotically optimal portfolio invests in dedicated

servers for each class, then there will be no investment in servers of level-k > 2 flexibility. Recall that

in queuing systems without arrival rate uncertainty, it is always asymptotically optimal to invest

a lot of capacity in dedicated servers and the corollary remains consistent with the asymptotic

optimality of tailored pairing in symmetric queuing systems established in BRV.

7. Summary

This paper has studied the classic problem of capacity and flexible technology selection with a

newsvendor network model of resource portfolio investment. We have presented an exact analytic

methodology and characterized the optimal flexibility configuration for newsvendor networks with

N products. This simple abstract approach is sufficiently powerful to prove that (i) flexibility

exhibits decreasing returns and, (ii) the optimal portfolio will invest in at most two, adjacent

levels of flexibility in symmetric systems. The analytic results were shown to extend to asymmetric

demand distributions, financial parameters, scale economies with setup costs, and economies of

scope. The characterization of the optimal portfolio allows a significant reduction in computational

complexity. Finally, we showed that our results can be applied to product substitution scenarios

and flexible queuing systems with arrival rate uncertainty.
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Appendix A: Supporting Results

Equivalence to the transportation problem. First, note that our optimization problem (??)–(??) is

equivalent to the following transportation problem that minimizes the unmet demand per product ui:
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π(K,D) = min
x,u≥0

N
∑

i=1

piui (20)

∑

{F :i∈F}

xi,F +ui ≥ Di for all i = 1, . . . ,N, (21)

∑

i∈F

xi,F ≤ KF for all F ⊆ {1, . . . ,N}. (22)

The equivalence follows by noting that for any optimal solution of the above problem, the constraint (??) is

binding. Theorem 3.4.1 of ? states that the transportation problem is supermodular in D. Hence, we directly

have:

Corollary 3. For any K,D ∈R
N
+, π(K,D) is supermodular in D.

The Dual problem and definition of Ωi,j. We return to our original optimization problem (??)–(??)

and note that the first term p
∑N

i=1 Di is constant and hence the objective can be re-expressed as maximizing

p
∑

F⊆{1,...,N}

∑N

i=1 xi,F . Given this equivalence, and denoting λF and µi to be the dual variables associated

with the capacity constraint for resource-F and demand constraint for product i respectively, the dual

problem can be written as:

min
λ,µ≥0

∑

F⊆{1,...,N}

KF λF +

N
∑

i=1

Diµi (23)

s.t. λF +µi ≥ pi, for F ⊆ {1, . . . ,N} and i∈ F. (24)

Using the dual problem, we can define the shortage regions as follows:

Definition 1. The shortage regions for dedicated resource i are defined as

Ωi,j(K)≡ {D : ∃ an optimal solution to (??)–(??), (λ⋆, µ⋆) with λ⋆
{i}(K,D) = pj}, for j = 1,2, . . . ,N.

The following result characterizes the dual variables:

Lemma 1. There exist optimal dual variables (λ⋆, µ⋆) such that

1. λ⋆
F ∈ {pN+1, pN , . . . , p1}, for all F ⊆ {1, . . . ,N}.

2. For any F,F ′ ⊆ {1, . . . ,N}, λ⋆
F∪F ′ = max{λ⋆

F , λ⋆
F ′}.

Proof of Lemma ??. Noting that the dual variables solve a linear program, they must be extreme, or

corner, points of the constraint set:

∆ = {(λ,µ) : λ,µ≥ 0, λF +µi ≥ pi, for F ⊆ {1, . . . ,N} and i∈ F},

where we use the following definition of an extreme point:
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Definition 2. y ∈ S is an extreme point of the convex set S, if there do not exist feasible points y′, y′′ ∈ S

with y′ 6= y′′ and α∈ (0,1) such that y = αy′ +(1−α)y′′.

The result then follows using properties 2 and 4 of the following lemma.

Lemma 2. Any extreme point of the set ∆ has the following properties:

1. λ{i} ≤ pi,

2. λF = supi∈F λ{i},

3. λ{i} +µi = pi,

4. λ{i} ∈ {pN+1, pN , . . . , pi}.

Proof of Lemma ??. We prove the result by using a contradiction argument. We first prove part 1.

Suppose there exist j such that λ{j} > pj . Then set (λ′, µ′) and (λ′′, µ′′) as follows: λ′
F = λ′′

F = λF for all F

except F = j, λ′
j = pj and λ′′

j = 2λ{j} − pi and µ′
i = µ′′

i = µi for all i. Thus, we have 0.5(λ′, µ′) + 0.5(λ′′, µ′′).

Further (λ′, µ′) and (λ′′, µ′′) lies in the set ∆. Thus, (λ,µ) is not an extreme point if λ{i} > pi for some

i∈ {1, . . . ,N}.

For part 2, suppose we have some (λ,µ)∈∆ with λ{j} ≤ pj for all j. Then if there exists λG 6= supi∈G λ{i}

then it must be the case that λG > supi∈G λ{i}. Set (λ′, µ′) and (λ′′, µ′′) as follows: λ′
F = λ′′

F = λF for all F

except F = G, λ′
G = supi∈G λ{i} and λ′′

G = 2λG − λ′
G and µ′

i = µ′′
i = µi for all i. Thus, we have 0.5(λ′, µ′) +

0.5(λ′′, µ′′). Further (λ′, µ′) and (λ′′, µ′′) lies in the set ∆. Thus, (λ,µ) is not an extreme point λF > supi∈F λ{i}

for some i∈ {1, . . . ,N}.

For part 3, suppose we have (λ,µ)∈∆ with λ{j} ≤ pj for all j. Then if there exists j, λ{j} +µj 6= pj then it

must be the case that λ{j} +µj ≥ pj . Set (λ′, µ′) and (λ′′, µ′′) as follows: λ′
F = λ′′

F = λF for all F , µ′
i = µ′′

i = µi

for all i 6= j, µ′
j = pj − λ{j} and µ′′

j = 2µj − µ′
j . Thus, we have 0.5(λ′, µ′) + 0.5(λ′′, µ′′). Further (λ′, µ′) and

(λ′′, µ′′) lies in the set ∆. Thus, (λ,µ) is not an extreme point λ{i} +µi 6= pi for some i∈ {1, . . . ,N}.

Finally, for part 4, assume we have (λ,µ) ∈ ∆ with properties 1, 2 and 3, but there exists λ{j} /∈

{pN+1, pN , . . . , pj}. Then by property 3, we must have µj > 0. Define sets

I = {i : λ{i} = λ{j}}

F = {F : λF = λ{j}}

Set δ := min{mink/∈I |λ{j} −λ{k}|,mink=1,2,...,N+1 |λ{j} − pk|, µj}. Now, define two feasible points (λ′, µ′) and

(λ′′, µ′′) as follows: λ′
F = λF + δ/2 for F ∈F , and λ′

F = λF for F /∈F , µ′
i = µi − δ/2 for i ∈ I and µ′

i = µi for
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i /∈ I; λ′′
F = λF −δ/2 for F ∈F , and λ′′

F = λF for F /∈F , µ′′
i = µi +δ/2 for i∈ I and µ′′

i = µi for i /∈ I. Then, we

have 0.5(λ′, µ′) + 0.5(λ′′, µ′′) = (λ,µ), and thus (λ,µ) cannot be an extreme point if λj /∈ {pN+1, pN , . . . , pj}

for all j = 1,2, . . . ,N . ¤

¤

Lemma ?? and (??) directly lead to the following result:

Lemma 3. For any capacity portfolio K, the marginal value of resource-F , ED[λ⋆
F (K,D)] equals

∑N

j=1 pjP(∪i∈F Ωi,j(K)).

A.1. Symmetric products

For a system with symmetric products, i.e., where the demand for the products is independent and identically

distributed, and with equal financial parameters pi = p for i = 1,2, . . . ,N , the results derived thus far are

simplified. In this case, the dual problem (??)–(??) can be rewritten with pi = p for all i. The corresponding

shortage regions can now be defined as

Ωi(K)≡ {D : ∃ an optimal solution to (??)–(??), (λ⋆, µ⋆) with λ⋆
{i}(K,D) = p}.

Appendix B: Proof of Results

Proof of Proposition ??. The result follows if we demonstrate that

P(∪k
j=1 ∪i∈F∪{q,r} Ωi,j)−P(∪k

j=1 ∪i∈F∪{q} Ωi,j)≤ P(∪k
j=1 ∪i∈F∪{r} Ωi,j)−P(∪k

j=1 ∪i∈F Ωi,j), (25)

for k = 1,2, . . . ,N. Defining Ω̃i =∪k
j=1Ωi,j , (??) is equivalent to

P(∪i∈F∪{q,r}Ω̃i)−P(∪i∈F∪{q}Ω̃i)≤ P(∪i∈F∪{r}Ω̃i)−P(∪i∈F Ω̃i). (26)

We can write the right hand side of (??) as

P(∪i∈F∪{r}Ω̃i)−P(∪i∈F Ω̃i) = P(Ω̃r ∪ (∪i∈F Ω̃i))−P(∪i∈F Ω̃i)

= P(Ω̃r)−P(Ω̃r ∩ (∪i∈F Ω̃i)).

(27)

Similarly, the left hand side of (??) can be written as

P(∪i∈F∪{q,r}Ω̃i)−P(∪i∈F∪{q}Ω̃i) = P(Ω̃r ∪ (∪i∈F∪{q}Ω̃i))−P(∪i∈F Ω̃i)

= P(Ω̃r)−P(Ω̃r ∩ (∪i∈F∪{q}Ω̃i)).

(28)

Comparing (??) and (??) and using the fact that P(Ω̃r ∩ (∪i∈F Ω̃i))≤ P(Ω̃r ∩ (∪i∈F∪{q}Ω̃i)), (??) follows.

If KF > 0, then we prove that P(∪N
j=1Ωr,j ∩ (∪i∈F ∪N

j=1 Ωi,j)) < P(∪N
j=1Ωr,j ∩ (∪i∈F∪{q} ∪N

j=1 Ωi,j)), and

thus (??) holds with strict inequality for k = N . To see why this inequality holds, pick any i ∈ F and a
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demand realization along with a corresponding optimal allocation x⋆ such that resource-F has some excess

capacity left after all allocations, resources-{q} and {r} are completely depleted after allocations while

there is shortfall in products q and r, i.e., KF − ∑

j∈F x⋆
j,F > 0, K{q} − x⋆

q,{q} = 0, K{r} − x⋆
r,{r} = 0, Dq >

∑

F ′⊆{1,...,N} x⋆
q,F ′ and Dr >

∑

F ′⊆{1,...,N} x⋆
r,F ′ . Thus, this demand realization lies in Ωq,q and Ωr,r, but not

in ∪i∈F ∪N
j=1 Ωi,j . Then, using the fact that the demand distribution has a positive density on R

N
+ , we obtain

the existence of a set A of demand realizations of positive measure (along with an optimal allocation) on

which resource-F still has excess capacity left after allocations, resource-{j} remains exhausted and demand

of product j continues to have a shortfall. Clearly, A ⊆ Ωq,q ∩ Ωr,r and A ∩ (∪i∈F ∪N
j=1 Ωi,j) is empty, and

thus P(∪N
j=1Ωr,j ∩ (∪i∈F ∪N

j=1 Ωi,j)) < P(∪N
j=1Ωr,j ∩ (∪i∈F∪{q} ∪N

j=1 Ωi,j)). ¤

Proof of Proposition ??. Consider any portfolio such that there are resources F ⊂ F ′ ⊂ F ′′ with

KF ,KF ′ ,KF ′′ > 0. We shall show that such a portfolio cannot be optimal. The optimality conditions requires

that the optimal portfolio must satisfy the following KKT conditions:

V (F ) = c1[1+ (|F | − 1)δ], V (F ′) = c1[1+ (|F ′| − 1)δ], V (F ′′) = c1[1+ (|F ′′| − 1)δ].

Applying Proposition ?? (which applies to this setting without change) there are diminishing returns to

flexibility, and using KF > 0 we obtain

V (F ′′)−V (F ′)

|F ′′| − |F ′| <
V (F ′)−V (F )

|F ′| − |F | .

This leads to a contradiction and the result follows. ¤

Proof of Proposition ??. Consider any capacity portfolio K. We can rewrite the marginal value of an

increase in the capacity of resource-{i} as

V ({i}) =
N

∑

k=1

(pk − pk+1)P(∪k
j=1Ωi,j)+

N
∑

k=1

(sk − sk+1)P(∪k
j=1Ωi+1,j \∪N

j=1Ωi,j)

=
N

∑

k=1

(sk − sk+1)P(∪k
j=1Ωi,j ∪Ωi+1,j)+ s

N
∑

k=1

P(∪k
j=1Ωi,j),

where pN+1 = 0, si = pi for i = 1,2, . . . ,N , and sN+1 = s. Similarly, the marginal value of resource-F , where

F ⊆ {1,2, . . . ,N}, can be written as

V (F ) =

N
∑

k=1

(sk − sk+1)P(∪k
j=1(∪i∈F (Ωi,j ∪Ωi+1,j)))+ s

N
∑

k=1

P(∪k
j=1 ∪i∈F Ωi,j),

where ΩN+1,j = φ is the null set for j = 1, . . . ,N . The rest of the proof follows analogous to that of Proposi-

tion ??. ¤
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