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Abstract

We consider state-space specifications of autoregressive moving average models (ARMA) and structural time series
models as a framework to formulate and estimate inspection and deterioration models for transportation infrastructure
facilities. The framework provides a rigorous approach to exploit the abundance and breadth of condition data generated
by advanced inspection technologies. From a managerial perspective, the framework is attractive because the ensuing mod-
els can be used to forecast infrastructure condition in a manner that is useful to support maintenance and repair optimi-
zation, and thus they constitute an alternative to Markovian transition probabilities. To illustrate the methodology, we
develop performance models for asphalt pavements. Pressure and deflection measurements generated by pressure sensors
and a falling weight deflectometer, respectively, are represented as manifestations of the pavement’s elasticity/load-bearing
capacity. The numerical results highlight the advantages of the two classes of models; that is, ARMA models have superior
data-fitting capabilities, while structural time series models are parsimonious and provide a framework to identify compo-
nents, such as trend, seasonality and random errors. We use the numerical examples to show how the framework can
accommodate missing values, and also to discuss how the results can be used to evaluate and select between inspection
technologies.
� 2006 Elsevier Ltd. All rights reserved.

Keywords: Infrastructure performance modeling; State-space models; Time series analysis; Advanced inspection technologies; Missing
data; Maintenance optimization
1. Introduction

Resource allocation decisions concerning the design, preservation and improvement of transportation
infrastructure facilities are evaluated and selected based on their long-term economic consequences. The
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evaluation involves processing data related to current condition1 and using them to forecast the effect of these
decisions on future condition. The economic consequences are then estimated by assuming a correspondence
between infrastructure condition and costs. Condition forecasts are generated with performance models,
which in this paper correspond to statistical expressions that relate condition to a set of explanatory variables
such as design characteristics, traffic loading, environmental factors, and history of maintenance activities. The
social and economic importance of the aforementioned decisions has, over the last 40 years, served as moti-
vation for the development of numerous performance models.

Performance models are estimated using data from panels of facilities. Panel data consist of two compo-
nents: cross-section data describing the differences between the facilities that comprise the panel, i.e., hetero-
geneity, and time series data describing the evolution of individual facilities over time. Most data sources are
unbalanced in that they typically have extensive cross-section data and limited time series data. For example,
Madanat et al. (1997) develop a bridge-deck performance model using data collected between 1978 and 1988
for 2602 bridges in the state of Indiana. More than 80% of the bridges were inspected three or fewer times. No
bridge in the data set was inspected more than seven times.2 To exploit this structure, existing performance
modeling approaches are static, meaning that condition is represented as a function of contemporaneous
explanatory variables and random error terms that describe the cross-sectional differences in the panel.

The motivation for the work described herein is that technologies such as sensors, laser or ultrasonic
probes, and satellite-imaging, are becoming increasingly useful for collecting condition data and the factors
that cause their deterioration. In the performance modeling context, advanced technologies permit frequent
and comprehensive inspections, and therefore, are capable of providing long and detailed historical data
for individual facilities, i.e., time series data. This serves as motivation for our work, which consists of the
development of dynamic performance models that are capable of exploiting the information contained in
the sequence of observations/measurements for individual facilities.

Another relevant characteristic of advanced inspection technologies is that they are capable of simulta-
neously evaluating and measuring multiple factors and distresses, thus, providing a complete and complex pic-
ture of a facility’s condition. The work described herein builds on the framework of Ben-Akiva and
Ramaswamy (1993), who introduce state-space models to rigorously address the problem of forecasting con-
dition when multiple technologies are used to simultaneously collect various types of condition data. The key
feature of the approach is that a facility’s condition is represented by latent/unobservable variables that cap-
ture the ambiguity that exists in defining, and consequently in measuring infrastructure condition. State-space
models are used to capture and estimate simultaneous processes, i.e., inspection, deterioration and mainte-
nance. In particular, measurements are related to the latent condition through a measurement model that
accounts for systematic and random errors in the inspection process, as well as for the relationships between
different technologies and measurements. Latent performance models also include a structural model that
describes the relationship between a set of explanatory variables and infrastructure condition. Empirical stud-
ies by Ben-Akiva and Ramaswamy (1993) and by Ben-Akiva and Gopinath (1995) have shown that latent per-
formance models are appropriate to generate condition forecasts of transportation infrastructure, i.e., the
goodness-of-fit measures are better than those reported using other statistical methods.

A salient feature of state-space specifications of time series models is that they provide a statistically rigor-
ous approach to estimate the parameters that drive the maintenance and repair (M&R) optimization model of
Durango-Cohen (2006). This means that in addition to providing a different approach for performance
modeling, the proposed framework is attractive (from a managerial perspective) because the ensuing models
can be used to support the allocation of resources for the preservation of transportation facilities. It also
1 Information about current infrastructure condition is obtained by evaluating and measuring surface distresses and structural
properties. Examples of surface distresses on transportation infrastructure include rut depth, type and extent of cracking, and extent of
surface patching, on pavements; and cracking, spalling, and chloride contamination on bridge decks. Deflection and strain are
manifestations of a pavement’s elasticity/load-bearing capacity.

2 Seminal data collection efforts for (in-service) pavements are described in Paterson (1987). Overall, their structure is similar to that of
the bridge data set in Indiana.
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means that the work described herein can be compared to the estimation of Markovian transition probabil-
ities3 that are used to drive M&R optimization models formulated as (latent) Markov Decision Processes
(cf. Madanat and Ben-Akiva (1994)). Indeed, the framework presented in Durango-Cohen (2006) addresses
critical computational limitations that make the latent MDP impractical when multiple technologies are used
simultaneously to measure (different) indicators of condition. These limitations follow from the fact that the
state variables used to represent the measurements in MDP formulations are defined over discrete and ordinal
sets. In addition to the computational problems, this assumption is unattractive as performance indicators are
increasingly measured by automated inspection methods, which are capable of providing precise continuous
readings (as opposed to ratings typically provided by human inspectors).

This paper complements our earlier work by providing a general class of statistical models that can be used
to represent the evolution of infrastructure condition, and that can be included in the aforementioned frame-
work to support M&R decision-making. Specifically, we describe and compare two classes of time series mod-
els: AutoRegressive Moving Average (ARMA) models and structural time series models. Through an
empirical study, we illustrate how the proposed methodology can be used to process (complete or incomplete)
condition data gathered simultaneously using advanced technologies. The data consist of deflection and pres-
sure measurements for an asphalt pavement located on a closed-loop test track that is run by the Minnesota
Road Research Program, MnROAD, the Road Research Division of the Minnesota Department of Transpor-
tation. The results highlight the advantages of each of the two types of models. ARMA models provide supe-
rior data-fitting capabilities, and structural time serious provide parsimonious models that enable the
identification of meaningful data components, e.g., trend, seasonality and random errors. We also use the
numerical results to illustrate how the proposed framework can be used to evaluate the capabilities of various
(combinations of) inspection technologies.

The remainder of the paper is organized as follows. Section 2 reviews state-space specifications of time ser-
ies models, and describes the two classes of models considered in this paper: ARMA and structural time series
models. Section 3 provides an overview of the approach that we use for model estimation, selection and diag-
nosis. We also describe important details about our implementation. Section 4 details the empirical study used
to illustrate the methodology. A summary of the contributions of the paper, as well as our conclusions are
presented in Section 5.
2. Time series models in state-space form

Here, we describe our approach to model infrastructure performance as a time series in state-space form.
The general form of a state-space model is shown in Eqs. (1) and (2).
3 Fo
X tþ1 ¼ gtX t þ htAt þ �tþ1 ð1Þ
Zt ¼ KtX t þ nt ð2Þ

where for periods t ¼ 1; 2; . . . ; T it is assumed that

Eð�tÞ ¼ 0 ð3Þ
Varð�tÞ ¼ R� ð4Þ
EðntÞ ¼ 0 ð5Þ
VarðntÞ ¼ Rn ð6Þ
Eð�tntÞ ¼ 0 ð7Þ
where the variables, parameters and random error terms in the model are as follows:

Xt: d · 1 vector used to represent the system’s/facility’s state/condition at the start of period t. As in
Ben-Akiva and Gopinath (1995) the vector might, for example, include a component to represent
r a review of this literature, the reader is referred to Mishalani and Madanat (2002) and the references therein.
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functional performance and a component to represent structural fitness. The additional components in
the vector can also be used to include lagged dependent variables to account for the effect of the history
of the process on the system’s deterioration.

At: m · 1 vector of exogenous factors that may include maintenance activities, environmental factors, traffic
loading, etc.

Zt: (with components denoted zt
(i)) is a k · 1 vector used to represent the distress measurements.

gt, ht: respectively, contain the parameters that describe the effect of the state vectors and explanatory vari-
ables on the state vector. Their dimensions are d · d and d · m.

Kt: is a k · d matrix describing the relationship between measurements and latent condition.
�t, nt: represent random error terms. They are assumed to follow Normal Distributions with finite second

moments. R� and Rn are used to denote their covariance matrices. The error terms and covariance matri-
ces are of dimensions d · 1, k · 1, d · d and k · k, respectively. They satisfy the properties presented in
Eqs. (3)–(7).

Eq. (1) is the system equation and Eq. (2) is the measurement error model. Eq. (1) governs system’s dynam-
ics, and captures the effect of explanatory variables. The components of the equation depend on the nature of
the system, and on the formulation that is adopted. The components considered herein are discussed in detail
both below, as well as in the subsequent section. For practical reasons, R� is frequently assumed diagonal
meaning that the elements in the state vector are independent.

Eq. (2) captures systematic and random errors in the inspection process. Often distresses corresponding to
different physical characteristics are collected, and therefore, the number of measurements is larger than the
number of latent condition variables (i.e. k > d). In such situations, the measurement error model captures
the relationships between the measurements and accounts for the fact that they are imperfect surrogates of
the latent condition variables. To reduce the number of parameters that require estimation, we follow Humplick
(1992) where the measurement errors are attributed to the inspection technologies even though, in general, they
could also depend on factors such as the facility being inspected, the equipment operator or the nature and
magnitude of the underlying distress. If multiple measurements are used, the correlations between the distress
measurement errors are captured by the covariance matrix of nt, Rn. Rn could be either diagonal or non-diagonal
depending on the properties of inspection technologies and their errors.

As stated above, the structure of general state-space models depends on the assumptions that are used to
specify the state vector components. In this paper, we consider two approaches leading to two classes of time
series models: ARMA models and structural time series models. In ARMA models, the state vector is
expressed as a function of lagged dependent variables and random error terms. The objective in this type
of formulation is to obtain a model that provides good fit-to-data. In structural time series models, the state
vector is decomposed into components representing meaningful data structures such as trend, seasonality, ran-
dom errors, etc. Lagged dependent variables can also be included, making structural time series more general
than ARMA models. In contrast, to ARMA models, the specification of structural time series models requires
judgments about the structures that are present in the sequence of observations. Additional information about
the two classes of models is provided in the following subsections.
2.1. Formulation of ARMA(p,q) models

An ARMA(p,q) model in state-space form can be represented as follows:
xt ¼ /1xt�1 þ /2xt�2 þ � � � þ /pxt�p þ �t þ h1�t�1 þ h2�t�2 þ � � � þ hq�t�q; t ¼ 1; 2; . . . ; T ð8Þ
zðiÞt ¼ kixt þ nðiÞt ; i ¼ 1; 2; . . . ; k; t ¼ 1; 2; . . . ; T ð9Þ
Eq. (8) is the system equation and Eq. (9) is the measurement error model. We let d � max{p,q + 1}, /i = 0
if i > p, and hj = 0 if j > q. As shown in Durbin and Koopman (2001), these definitions can be used to rewrite
the above model in the general state-space form as is shown in Eqs. (10)–(12). To simplify the presentation, we
exclude the explanatory variables
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The first element in the state vector, xt, represents the true facility condition at time t. Eq. (11) is the measure-
ment error model for k distress measurements (Eq. (12) is for the special case of a single measurement). As dis-
cussed above, the structure of Rn depends on the assumptions regarding the correlations between inspection
technologies. The parameters to be estimated are /1, . . . , /d, h1, . . . , hd�1, r�

2, k1, . . . , kk, Rn. In the estimation
process, the true condition is generally set to be equal to one of the condition measurements, a reference measure-
ment. This is done by setting ki = 1 for the reference measurement. As stated earlier, �t and nt are assumed to follow
Normal Distributions with finite second moments. Without loss of generality, we assume they have zero means.

2.2. Formulation of structural time series models

This section follows the presentation in Harvey (1990) and Durbin and Koopman (2001). Structural time series
models consist of components that capture (deterministic or stochastic) trend, seasonality, and random error. We
use lt and bt to denote trend and slope at time t. Similar to intercept and slope terms in regression models, trend
and slope components represent the long-term movements of the series. The relationship between trend and slope
is described in Eqs. (13) and (14). The existence of gt and ft indicate that both trend and slope could be stochastic
and change over time. Note that when gt and ft are set to zero, the model exhibits a deterministic linear trend, that
is, lt = a + bt, where a and b are constant coefficients. ct is the seasonal component at time t. As shown in Eq. (15),
seasonality components are formulated such that their sum for a year equals zero for deterministic cases, or a
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random error xt for stochastic cases. Lagged dependent variables up to order p can also be included to capture the
dependence on the history of the process. This gives Eq. (16) describing facility condition as a function of lagged
dependent variables up to order p, trend, seasonality, and random error. This equation has the unattractive
feature that the state-vector, Xt, is expressed as a function of the contemporaneous arguments, lt and ct. This
is easily fixed by replacing the results of Eqs. (13)–(15) into Eq. (16) to obtain Eq. (17). The special case with
no lagged dependent variables in the model is obtained by setting /1 = /2 = � � � = /p = 0 for periods
t = 1, . . . , T. The measurement error equation of structural time series with k measurements is identical to Eq. (9).
Trend: lt ¼ lt�1 þ bt�1 þ gt ð13Þ
Slope: bt ¼ bt�1 þ ft ð14Þ

Seasonality :
Xs�1

j¼0

ct�j ¼ xt ð15Þ

System equation:

xt ¼ /1xt�1 þ /2xt�2 þ � � � þ /pxt�p þ lt þ ct þ �t; t ¼ p þ 1; . . . ; T ð16Þ
xt ¼ /1xt�1 þ � � � þ /pxt�p þ ðlt�1 þ bt�1 þ gtÞ þ ðxt � ct�1 � ct�2 � � � � � ct�sþ1Þ þ �t ð17Þ
In Eq. (18), we rewrite the system equation in the form of the general state-space model. �t, gt, ft, and xt, are
assumed independent Normally distributed random variables with zero mean and finite variance. To simplify
the presentation, we exclude the explanatory variables. As with ARMA models, the latent condition is gener-
ally set to be equal to a reference measurement. Thus, the parameters to be estimated in structural time series
formulations are /1, . . . , /p, r�

2, rg
2, rf

2, rx
2, k1, . . . , kk, Rn.
ð18Þ
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To conclude this subsection, we discuss the relationship between the formulations considered herein and
ARIMA (autoregressive integrated moving average) models developed by Box and Jenkins, which is the most
common approach for the analysis of time series. The Box–Jenkins approach is based on the assumption of
stationary data. For non-stationary data, differencing techniques must be applied to obtain stationary data.
However, the elimination of trends or seasonality by differencing may be a drawback when they are of interest,
as may be the case when modeling the performance of transportation facilities. Structural time series models
can be reduced to ARIMA models. For example, a BSM with monthly seasonal terms can be reduced to
MA(13) after first and 12th order differencing (in order to remove trend and monthly seasonality). We empha-
size that this reduction is not attractive because the feature of structural time series models is the meaningful
components and these components will not exist for observation after the data are transformed to obtain an
ARIMA model. Further details are presented in Harvey (1990).
3. Model estimation, selection and diagnosis

One of the advantages of presenting different types of time series models as instances of the general state-
space form is that it simplifies the presentation and implementation of the procedure to estimate the model
parameters. This section outlines the procedure we implemented. One of the critical steps involves evaluating
single-step prediction errors and their variances, for which we implement the square root filter algorithm. Our
implementation of the square root filter handles missing observations/measurements and is presented in
Appendix A. Finally, we describe the approach that we use to evaluate, select and diagnose models for statis-
tical adequacy.
3.1. Loglikelihood function

We adopt Maximum Likelihood Estimation to estimate the parameters due to the asymptotic properties
of the ensuing estimates. In time series the observations are assumed to follow a joint distribution,
f(X1,X2, . . . ,XT�1,XT). The assumption required for MLE to estimate time series models is that nt and �t follow
Normal distributions. It follows that the conditional distribution of Xt given data up to t � 1 is also Normal.
Based on the above assumption, the loglikelihood function of a state-space model can be formulated as Eq.
(19). A detailed derivation can be found in Harvey (1990). We maximize the loglikelihood function with the
non-linear unconstrained optimization routine in MATLAB. As shown in the equation, the evaluation of the
function depends on values of Vt and Ft. These values are generated by the square root filter described below.
The reason that the calculation starts at time d + 1 is explained in Appendix A
logL ¼ � T � d
2

log 2p� 1

2

XT

t¼1þd

log detðF tÞ �
1

2

XT

t¼1þd

V 0tF
�1
t V t; ð19Þ
where Vt is the one step prediction error at time t, Ft is the prediction error variance (PEV) at time t and d is
the cardinality of the state vector.

The square root filter is a variant of Kalman filter, which is an algorithm to calculate the optimal estimators
of the state vector for state-space specifications, and also to compute Vt and Ft in the loglikelihood function.
However, covariance matrices are not guaranteed positive-definite in the standard Kalman Filter. This, in
addition to numerical instability and rounding errors that appear in the standard Kalman Filter creates dif-
ficulties both in evaluating and maximizing the loglikelihood function. These disadvantages motivate the
implementation of the square root filter. Instead of using the original covariance matrices, the square root fil-
ter decomposes them into lower-triangular matrices (square root of covariance matrices), and recursively com-
putes the square roots of matrices. This transformation not only guarantees positive definite covariance
matrices, but also provides more significant digits for calculation. Therefore, it is considered numerically sta-
ble and robust. The disadvantage of this algorithm is the additional computational effort. For the details of the
algorithm, readers are referred to Morf and Kailath (1975). A modification of the algorithm that can handle
missing observations is presented in Appendix A.
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3.2. Model selection and diagnosis

Generally, the prediction error decreases as the number of model parameters increases. To avoid ‘‘overfit-
ting’’ in the process of selecting adequate model specifications in the empirical study, we use Akaike’s Infor-
mation Criterion (AIC) in Eq. (20) to measure the trade-off between prediction error and number of
explanatory variables. Smaller values of AIC are preferred
AIC ¼ �2� logLþ 2� ðnþ dÞ
T

; ð20Þ
where n represents the number of parameters in the model.
We note that autocorrelation and partial autocorrelation functions are commonly used for selecting

between ARMA models; however, this type of analysis does not apply to time series models in state-space
form. Instead, we propose to use backward elimination, where models are refined by removing the (statisti-
cally) insignificant parameters from the model specification. This technique is used in the empirical study pre-
sented in Section 4.

In addition to AIC, which examines data-fitting, models are further diagnosed by generating in-sample and
out-of-sample predictions. In-sample predictions are made from t = d + 1 to t = T and compared with the
observations. This task studies a model’s capability of reproducing observations and capturing the underlying
mechanism generating the data sequence. Out-of-sample predictions start from t = T + 1 and the length of
prediction is arbitrary. This is the most powerful test for a time series model. Generally, the same length of
observations are not used for estimation in order to compare out-of-sample prediction and actual data; how-
ever, due to data limitations, we decided not to use this technique in the empirical study.

After a model is selected, we further diagnose the model by examining the residuals, i.e., the differences
between one-step predictions and observations. We conduct the residual analysis to check that serial correla-
tions of the residuals and these residuals are expected to be independent and identically distributed.

4. Empirical study

In this section, we use the methodology described in the previous section to estimate performance models
for asphalt pavements. The data for the study consist of deflection and pressure measurements from cell 33, a
Superpave test cell located on a closed-loop test track that is run by MnROAD, the road research division of
the Minnesota DOT. Superpave (SUperior PERforming Asphalt PAVEments) refers to the criteria used for
designing and building hot-mix asphalt (HMA). These pavements are designed for performance under extreme
environmental conditions and heavy truck loadings. Additional details are available in Palmquist et al. (2002)
and Zerfas (2003). The design of the cell is 4-in. HMA, 12-inch class-6 base, and clay subgrade. The asphalt
binder used is polymer modified PG 58-34. The construction finished in September 2, 1999 and the traffic load-
ing started on September 30, which implies that the cell was almost new in the beginning of data collection.

Two measurements, deflection and pressure, are chosen to illustrate the methodology. The descriptions of
these two measurements appears below. Measurements such as rut depth and roughness are more commonly
used in pavement performance modeling. However, as stated earlier time series modeling requires long,
detailed historical data. Our choice reflects the fact that deflection and pressure are the most complete mea-
surements in MnROAD database. Both measurements were collected in the four year period from November
1999 (t = 1) through October 2003 (t = T = 48).

4.1. Deflection

Pavement surface deflection is the primary means of evaluating a flexible pavement’s structural fitness/load-
bearing capacity. It is the most commonly used indicator of structural condition by transportation agencies
Gramling, 1994. Golabi and Pereira (2003), for example, selected deflection as performance indicators in
the pavement management system they developed for Portugal. Deflection is measured as a pavement sur-
face’s vertical deflected distance as a result of an applied (static or dynamic) load. It is collected by impact/
impulse load response, where an impact load device delivers a transient impulse/load to the pavement surface.
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The induced pavement response (deflection basin) is measured by a series of sensors. The most common type
of tool used to induce the load is a falling weight deflectometer (FWD).

Deflection can be used to estimate the modulus of elasticity of pavement layers, as well as the effective struc-
tural number, which represents the remaining structural capacity of the pavement section. Deflection measure-
ments are relatively low during the winter and high during the summer. Thus, in practice, deflection
measurements are adjusted to a single reference temperature before use in order to control for seasonal effects
AASHTO, 1993. In this empirical study, we use the unadjusted values in order to explore the capability of the
proposed specifications to capture seasonal patterns.

The data used in our analysis consist of the monthly average deflection measurements (in thousandths of an
inch – mils) induced by a FWD. The data are plotted in Fig. 1. The frequency of data has important effect on
model formulation and will be explained later. Considering that maintenance policies of transportation infra-
structure are hardly made more frequently than monthly, we adopt monthly average data in the empirical
study. However, the methodology is capable of different frequencies of data; in fact, data availability is more
likely to constrain the analysis. Twelve entries in the data set were missing and are represented as empty
squares in the figure.
4.2. Pressure

Vertical pressure data are used to determine the vertical stress distribution in the base and subgrade layers
of a pavement. Pressure measurements in MnROAD are collected by inducing a load generated by a truck
(that has five axles). The pressure measurements (in millivolts) are collected with a dynamic soil pressure cell

sensor set on top of the subgrade. Pressure measurements can be used to calculate strain measurements
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approximately via modulus of elasticity. Moreover, since strain is commonly used to represent pavement
structural strength, pressure data constitute another important indicator of a pavement’s structural perfor-
mance. Like deflection, stress is affected by temperature and an adjustment is commonly used in practice.
Another reason for choosing the measurement is that the sensor is still fully functional after four years of oper-
ation while many other sensors installed in the pavement have failed. Although the data collected by sensors
are automatic and frequent, the nature of pavement facility makes the replacement of failed sensors very
difficult.

In our study, we use the monthly average of the pressure measurements induced by the first axle of loaded
trucks. The data are presented in Fig. 2. Eight missing entries are represented as empty squares in the figure.
4.3. Estimation results

4.3.1. ARMA time series models

The data in Figs. 1 and 2 exhibit clear seasonality; therefore, it is necessary to consider ARMA models of
order 13 or higher for the undifferenced monthly data. To simplify the estimation of the model and the inter-
pretation of the results, we consider AR models instead of ARMA models in the analysis. We set deflection to
be the reference measurement, henceforth denoted with subscript 1. We use backward elimination principle to
refine the resulting models. The backward elimination principle is to start the estimation with a higher order
and eliminate the insignificant parameters to obtain reasonable models.

Several models were considered and the best results were obtained for an AR model of order 13. To illus-
trate the model selection process, we begin by estimating the general AR(13) model, labeled AR-1. The least
Table 1
Estimation results for ARMA models with two distress measurements

Parameters AR-1 AR-6 AR-7

Est. t-Stat. Est. t-Stat. Est. t-Stat.

r2
� �7.26E�04 �3.13E�03 �1.96E�06 �5.50E�06 1.08E�06 2.46E�06

rð0Þn �3.98 �6.79 3.62 6.37 3.57 6.43

rð00Þn 0.52 3.75 �0.37 �1.83 �0.38 �1.81

rð000Þn �0.45 �5.37 0.70 6.66 0.74 6.75

/1 �0.28 �1.49 – – – –
/2 0.33 1.95 �0.18 �3.06 �0.16 �3.09
/3 �0.26 �2.29 0.34 3.55 0.39 4.15
/4 0.69 3.30 0.06 1.61 – –
/5 �0.16 �0.84 – – – –
/6 �1.10 �6.28 �0.80 �13.20 �0.83 �14.45
/7 0.71 2.86 0.51 5.59 0.55 7.82
/8 �0.03 �0.14 – – – –
/9 0.09 0.50 0.27 4.13 0.28 4.07
/10 0.55 2.85 – – – –
/11 �0.28 �2.19 0.18 3.94 0.15 3.77
/12 0.22 2.33 – – – –
/13 0.54 4.03 0.62 8.32 0.62 7.89

k2 0.26 21.08 0.26 22.66 0.27 22.58

LL �112.71 �116.66 �117.90
AIC 5.99 5.94 5.95
n 18 13 12

r2
� represents the variance of the system equation.

The covariance matrix of measurement errors are defined by Rn ¼
ðrnð1Þ Þ

2 rnð1Þnð2Þ

rnð2Þnð1Þ ðrnð2Þ Þ
2

" #
¼ RL

nR
L
n
0 ¼

ðrð0Þn Þ
2 rð0Þn rð00Þn

rð0Þn rð00Þn ðrð00Þn Þ
2 þ ðrð000Þn Þ

2

" #
, where

RL
n ¼

rð0Þn 0

rð00Þn rð000Þn

" #
. As defined throughout the empirical study, the first measurement is deflection and the second is pressure.

Bold entries indicate the parameters are insignificant at 95% level of confidence.
The AICs of AR-2 to AR-5 are 5.97, 6.05, 6.01, and 5.97, respectively.
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significant / parameter is set to zero and then AR-2 is estimated (t-statistics with magnitude greater than
2 indicate that the associated parameter is significant at the 95% confidence level). AR-3 through AR-7 are
generated in the same way. Since all of the / parameters are significant, we terminate the elimination process
with AR-7. The parameter estimates and goodness-of-fit measures for all variations are presented in Table 1.
We observe that AR-6 results in the best AIC. In other words, AR-6 has the best tradeoff of the number of
parameters and model fit. The standardized residuals of both measurements from AR-6 model are further
tested using sample autocorrelation function. Sample autocorrelation function shows the residuals are inde-
pendent and identically distributed with N(0,1/T) since over 95% of the function values are within
�1:96

ffiffiffiffi
T
p

. Hence, the preferred AR-6 is statistically satisfactory.
The final model is presented in Eqs. (21) and (22). Eq. (21) represents the evolution of the pavement over

time. The fact that the variance of error term is negligible indicates that all randomness in the data is attrib-
uted to the inspection technologies. Eq. (22) is the measurement error model. z(1) is the deflection measurement
and z(2) is the pressure measurement. n is the measurement error vector of the two technologies and Rn is the
covariance. From the equation, the measurement error of deflection is much greater than pressure, which also
can be seen from Fig. 3. Since the two measurements have different magnitudes, variance of measurement is
not sufficient to compare technologies and we further use coefficient of determination to choose the better
technology. The result shows that R2 of deflection is 0.83 while R2 of pressure measurements is 0.89. It means
that pressure sensor not only has smaller measurement error but provides better fit than FWD. This informa-
tion might be useful for technology selection as suggested in Ben-Akiva and Ramaswamy (1993).
xt ¼ �0:18xt�2 þ 0:34xt�3 þ 0:06xt�4 � 0:80xt�6 þ 0:51xt�7 þ 0:27xt�9

þ 0:18xt�11 þ 0:62xt�13 þ �t; �t � Nð0; 3:85E � 12Þ ð21Þ

zð1Þt

zð2Þt

" #
¼

1:00

0:26

� �
xt þ

nð1Þt

nð2Þt

" #
; Rn ¼

13:14 �1:33

�1:33 0:62

� �
ð22Þ
Further, the model is examined by the 33-month prediction (from February 2001 (t = 16) to October 2003
(t = 48)). From Fig. 3, the model reproduce both observations adequately, which indicates that the model cap-
tures the data evolution well. In addition, 12-month out-of-sample prediction (from November 2003 to Octo-
ber 2004) is done. The length of prediction is chosen because M&R decisions are generally planned for on an
annual basis. From the figure, the out-of-sample prediction is consistent with the history of data and the pat-
tern seems reasonable.
4.3.2. Structural time series models

As described earlier, the data sets show clear seasonality; therefore, it is beneficial to adopt structural time
series models. To identify the components of the data set, four structural time series models are estimated. The
results are listed in Table 2. The first model, BSM-1, incorporates trend, seasonality, random error, one-step,
and two-step lagged dependent variables. The estimation shows that the variances of trend, slope, and random



Table 2
Estimation results for basic structural model (BSM) with two-step lagged dependent variable

Parameters BSM-1 BSM-2 BSM-3 BSM-4

Est. t-Stat. Est. t-Stat. Est. t-Stat. Est. t-Stat.

r2
� 3.22E�11 5.98E�06 4.91E�08 �2.08E�04 �0.71 �1.57E�06 0.24 1.13E�03

r2
g 3.16E�13 �2.03E�06 – – 1.27E�14 3.75E�07 0.01 0.02

r2
f 6.65E�14 �9.63E�06 – – 4.62E�19 2.25E�08 5.78E�03 0.58

r2
x 8.17E-12 4.86E-06 – – 0.71 �0.61 4.87E�10 1.07E�05

rð0Þn �3.59 �6.91 3.59 6.91 �3.57 �5.55 4.86 0.11

rð00Þn �0.05 �0.12 0.05 0.12 �0.14 �0.34 0.77 0.05

rð000Þn 1.13 7.36 1.13 7.36 1.16 5.90 1.15 0.54

/1 0.93 8.34 0.93 8.34 0.18 1.15 – –
/2 �0.67 �3.37 �0.67 �3.37 – – – –

k2 0.26 22.43 0.26 22.43 0.26 22.72 0.26 24.24

LL �130.66 �130.66 �132.73 �140.32
AIC 6.49 6.36 6.53 6.80
n 10 7 9 8

r2
� represents the variance of the system equation; r2

g is the variance component of the trend equation; r2
f is the variance component of the

slope equation and r2
x is the variance component of the seasonality equation.

The covariance matrix of measurement errors are defined by Rn ¼
ðrnð1Þ Þ

2 rnð1Þnð2Þ

rnð2Þnð1Þ ðrnð2Þ Þ
2

" #
¼ RL

nR
L
n
0 ¼

ðrð0Þn Þ
2 rð0Þn rð00Þn

rð0Þn rð00Þn ðrð00Þn Þ
2 þ ðrð000Þn Þ

2

" #
, where

RL
n ¼

rð0Þn 0

rð00Þn rð000Þn

" #
. As defined throughout the empirical study, the first measurement is deflection and the second is pressure.

Bold entries indicate the parameters are insignificant at 95% level of confidence.
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errors are insignificant. Two approaches are used to refine BSM-1. The first approach is to replace stochastic
trend and seasonality with deterministic ones. The results show that removing the stochastic components pro-
vides almost identical loglikelihood values. Thus, BSM-2 is preferred with a smaller number of parameters.

The second approach is to reduce the number of lagged dependent variables. The two-step lagged depen-
dent variable is removed from BSM-1 and the one-step lagged dependent variable of BSM-3 turns out not to
be significant. The fact that the one-step lagged dependent variable is not significant can be explained by the
inclusion of the ‘‘slope’’ variable in the model, that is, their effect overlaps due to the linearity of the state space
model. Also, BSM-3 is worse than BSM-1 in terms of goodness-of-fit. Further, the one-step lagged dependent
variable is removed from BSM-3 and BSM-4 is estimated. Again, BSM-4 has worse AIC than other models.
Comparing BSM-1 to BSM-3 and BSM-4 in Table 2, virtually all the variances of the random error terms are
smaller, which indicates that BSM-1 captures the transition of the system better and the model itself becomes
‘‘less stochastic’’. In other words, the lagged dependent variables in the model explain a larger part of the var-
iance in the data.

In summary, BSM-2 is preferred among BSM models in terms of AIC. The beauty of the structural time
series models is the meaningful components of the series, which are shown in Fig. 4. In the figure, trend, slope,
and seasonality are clearly decomposed. The seasonality matches the seasonal change of the reference mea-
surements reasonably. The information of seasonality can be extracted from actual data and external temper-
ature adjustment factors are not required. Further, since differencing is not used, the component remains,
whether it is of interest or not. However, the important component of a structural time series model, the trend,
is harder to interpret from this data set. The negligible slope matches the fact that both the measurements are
not increasing or decreasing except for the seasonal change. In other words, the section did not deteriorate
over the duration of the experiment. This is explained by the fact that the pavement section was designed
to withstand environmental and traffic loading extremes. Note that if structural deterioration of pavement
were to exist, this specification would be able to detect it. Moreover, the residuals of both measurements from
BSM-3 model are further tested using sample autocorrelation function. The test shows that the residuals are
independent and identically distributed, which indicates that the preferred BSM-2 model is statistically
satisfactory.
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The preferred model is presented in Eqs. (23)–(27). Again, randomness is entirely attributed to measure-
ment errors. Note that the measurement error of deflection is still higher than that of pressure. However,
the deflection has higher R2 than pressure (0.76 > 0.71). It is expected that the R2 values of BSM models
are lower than those of ARMA models given the smaller number of parameters. However, the much worse
data-fitting of BSM model for pressure could be explained by the fact that pressure does not follow presumed
structures closely. Thus, for structural time series model, the best technology for measuring pavement condi-
tion would be FWD, which contradicts the result in ARMA models. Hence, in this empirical study, the pre-
ferred technology depends on the model specification, and therefore the test is inconclusive.
xt ¼ 0:93xt�1 � 0:67xt�2 þ lt þ ct þ �t; �t � Nð0; 4:91E � 08Þ ð23Þ
lt ¼ lt�1 þ bt�1 þ gt�1; gt � Nð0; 0Þ ð24Þ
bt ¼ bt�1 þ ft�1; ft � Nð0; 0Þ ð25Þ
ct þ ct�1 þ ct�2 þ � � � þ ct�sþ1 ¼ xt; xt � Nð0; 0Þ ð26Þ

zð1Þt

zð2Þt

" #
¼

1:00

0:26

� �
xt þ

nð1Þt

nð2Þt

" #
; Rn ¼

12:91 0:16

0:16 1:28

� �
: ð27Þ
Fig. 5 also shows that the model makes condition forecasts adequately. The model is examined by the
33-month in-sample and 12-month out-of-sample prediction. The forecasts clearly are consistent with the
structures of the model specification. For example, the seasonality patterns are identical for the near three-year
in-sample prediction. On the other hand, the seasonality patterns show greater variety in the ARMA example
in Fig. 3.
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5. Conclusions and discussion

We consider state-space specifications of ARMA and structural time series models as a framework to
develop performance models for transportation infrastructure facilities. The work is motivated by the
increased use of advanced technologies, e.g., sensors and radar, to evaluate and measure distresses on trans-
portation facilities, as well as the factors that cause their degradation. In particular and in contrast to existing
performance modeling approaches, the proposed framework exploits the information contained in the
sequence of observations/measurements for individual facilities. From a managerial perspective, an attractive
feature of the proposed framework is that the ensuing performance models fit the maintenance optimization
framework of Durango-Cohen (2006), which means that they can be used to forecast infrastructure condition
in a manner that is useful to support decision-making. Moreover and because the framework is consistent with
the latent performance modeling approach of Ben-Akiva and Ramaswamy (1993), the capabilities of the
inspection process, i.e., errors and the relationships between various indicators/measurements, can be esti-
mated and properly accounted for in the forecasting process.

To illustrate the methodology, we present an empirical study where we develop and compare performance
models for an asphalt pavement. The models in the study capture the evolution of a latent variable, i.e., the
pavement’s elasticity/load-bearing capacity, that manifests itself through pressure and deflection measurements
collected with a pressure sensor and falling weight deflectometer, respectively. The results highlight the charac-
teristics of each of the two types of models. ARMA models provide superior data-fitting capabilities, but the
model parameters, including their magnitudes and signs, have no physical meaning. In contrast, structural time
series provide parsimonious models that enable the identification of meaningful data components, e.g., trend,
seasonality and random errors. We also use the numerical results to illustrate how the estimation procedure can
be easily updated to account for missing observations/measurements, and how the proposed framework can be
used to evaluate the capabilities of various (combinations of) inspection technologies.

An attractive feature of time series models in state space form is that intervention analysis can be used to
estimate the effect of maintenance activities. Data limitations preclude this analysis in the current paper, but
the application is presented in Chu and Durango-Cohen (2005).

Two relevant limitations of the framework described herein are that (i) the estimation procedure can be
interpreted as the characterization of a stochastic process from a single realization, and (ii) constant explan-
atory factors, whose effect does not change over time, e.g., structural design, cannot be included because their
effect cannot be identified from time series data. The first limitation precludes formulating general inferences
about the underlying process, meaning that predictions are only warranted for identical facilities that deteri-
orate under identical conditions, if at all. The first limitations can be addressed by extending the framework to
estimate models for panels of facilities as is shown in Chu and Durango-Cohen (2006).

Unfortunately, the second limitation is more troublesome. Even though the effect of constant explanatory
variables, e.g., structural design, soil characteristics, etc., should be identifiable when panel data are used, the
parameter estimates can, in fact, be biased due to the linearity of the state-space model. For example, when a
constant explanatory variable is included in At, its effect and that of the random error term �t overlap in
Eq. (1), and consequently, the parameter identification becomes difficult. Chu and Durango-Cohen (2006) fur-
ther discuss this limitation, and how it can be ‘‘finessed’’ by employing nonlinear data transformations that do
not compromise the linearity of state-space models.
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Appendix A. Square root filter

The general treatment of missing observations in state-space models is discussed in Durbin and Koopman
(2001). This appendix describes our modification of the square root filter to cope with missing observations/
measurements. The main idea is that when observations are missing at time t, the measurement vector Zt is
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separated into Z	t that consists of the observed measurements and Z#
t that consists of the missing measure-

ments. Therefore, the filter is modified to works with Z	t , whose dimensionality changes over time. Obviously,
when all measurements are observed, Zt ¼ Z	t . To automatically separate vectors or matrices into observed and
missing parts, the matrix W 	

t is introduced in the algorithm. W 	
t is a subset of the identity matrix Ik·k. When

the ith measurement is missing, the ith row of Ik·k is removed from the matrix. The remaining rows of the
identity matrix constitute the matrix W 	

t .
The complete algorithm is presented below. In the presentation, we assume basic familiarity with the stan-

dard Kalman Filter, which can be found in, for example, Harvey (1990). To initialize the filter, values X1 and
P1 are required. We adopt the diffuse initial values approach; that is, X1 = 0 and P1 = kI where k is a large
number and Id·d is a d · d identity matrix. This implies that the knowledge of initial values is unavailable
and they are calculated using the first d period(s) of observations. It also explains why the same time periods
of the prediction errors are not counted in Eq. (19). Note that when models with different d values are com-
pared, the largest value among them is used.

As mentioned above, the filter computes square roots of the covariance matrices, as shown in Eqs. (28)–
(30), where Pt is the covariance matrix of state vector at time t.
Rn ¼ fRn
eR0n ð28Þ

R� ¼ eR�
eR 0� ð29Þ

P t ¼ eP t
eP 0t: ð30Þ
The complete algorithm is as follows: Square root filter
X 1 ¼ 0 ð31ÞfP 1 ¼
ffiffiffi
k
p

Id�d ð32Þ
For t ¼ 1; . . . ; T :

Generate W 	
t ð33Þ

Z	t ¼ W 	
t Zt ð34ÞbZ 	t ¼ ðW 	

t KÞX t ð35Þ
V 	t ¼ Z	t � bZ 	t ð36Þ
V #

t ¼ 0 ð37Þ
Calculate fR	n by applying Cholesky decomposition on

R	n ¼ fR	nfR	n 0 ¼ W tðfRn
fRn
0ÞW 0

t ð38Þ

Ut ¼
ðW 	

t KÞ eP t
fR	n 0

g eP t 0 fR�

" #
ð39Þ

CalculateU yt by applying QR decomposition on U 0t ¼ QU yt
0 ð40Þ

Obtain U y1;t;U
y
2;t; and U y3;t by partitioning U yt ¼

U y1;t 0 0

U y2;t U y3;t 0

" #
;

where U y1;t; U y2;t; and U y3;t are k � k; d � k; and d � d matrices: ð41Þ
If observations are fully or partially available at time t then

F 	t ¼ U y1;tU
y0
1;t ð42Þ

X tþ1 ¼ gX t þ hAt þ U y2;tU
y
1;t

�1
V 	t ð43Þ

End If
If the observations are fully missing at time t then
X tþ1 ¼ gX t þ hAt ð44Þ
End IfgP tþ1 ¼ U y3;t ð45Þ
End For Loop



Eqs. (31) and (32) are used to initialize the filter at t = 1. The algorithm then processes W 	
t , Z	t , cZ	t , and Vt as
shown in Eqs. (33)–(37). Note that for the measurements that are missing, the prediction errors V #
t are

assumed zero as Eq. (37) shows, which implies that these measurements are not used to update the state vec-
tor. In Eq. (38) R	n is calculated using Cholesky decomposition.4 This step is reduced to Eq. (28) and can be
skipped if all measurements are observed.

Eq. (40) makes use of the fact that Q is an orthogonal matrix to compute U tU 0t ¼ ðU yt Q0ÞðQU yt
0Þ ¼ U yt U

y
t
0
,

where U yt is a lower triangular matrix. Ft and Pt are obtained with UtU 0t (Eq. (39)) and U yt U
y
t
0

(Eq. (41)). Note
that QR decomposition5 is not used in the original square root filter. In Morf and Kailath (1975), U yt is derived
by multiplying Ut by any orthogonal matrix Q such that Q 0Q = I2d+k·2d+k. To provide an unambiguous pro-
cedure for implementation, this step is replaced by QR decomposition that gives a unique orthogonal matrix
for calculating U yt in Eq. (40). Eqs. (42)–(45) are obtained by replacing the original components in the standard
Kalman filter with U�’s. Note that Eq. (44) implies that the prediction error variance is extremely large
(F 	t

�1 ¼ 0) when no measurement is observed. Thus, no information is available for updating the state vector.
In terms of evaluating loglikelihood function when missing observations exist, V 	t and F 	t substitute Vt and

Ft in the function. In the special case when all observations are missing for a time period, the dimensionality of
the measurement vector reduces to zero and that particular time period is ignored.
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