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a b s t r a c t

We present a quadratic programming framework to address the problem of finding optimal
maintenance policies for multifacility transportation systems. The proposed model pro-
vides a computationally-appealing framework to support decision making, while account-
ing for functional interdependencies that link the facilities that comprise these systems. In
particular, the formulation explicitly captures the bidirectional relationship between
demand and deterioration. That is, the state of a facility, i.e., its condition or capacity,
impacts the demand/traffic; while simultaneously, demand determines a facility’s deterio-
ration rate. The elements that comprise transportation systems are linked because the state
of a facility can impact demand at other facilities. We provide a series of numerical exam-
ples to illustrate the advantages of the proposed framework. Specifically, we analyze sim-
ple network topologies and traffic patterns where it is optimal to coordinate (synchronize
or alternate) interventions for clusters of facilities in transportation systems.

� 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Transportation infrastructure management refers to the process of making decisions concerning the allocation of re-
sources for maintenance of the facilities that comprise transportation systems. The objective in making these decisions is
to ensure that the systems are capable of performing the functions for which they were designed and built, while accounting
for limited resource availability or level-of-service requirements. In this context, management decisions trade off user costs,
which are associated with travel time, fuel consumption, vehicle depreciation and maintenance, and agency costs that are
related to the type and intensity of maintenance activities, and include expenses for resource and personnel delivery, mate-
rials, etc. As facilities deteriorate, the rate at which user costs accrue increases. In turn, agency costs are incurred to improve
condition, and thus, reverse the effects of deterioration.

The primary motivation for the work presented herein is that existing maintenance optimization models sacrifice impor-
tant functional characteristics in favor of computational tractability/simplicity. In particular, models for multifacility trans-
portation systems are usually formulated as constrained Markov Decision Processes (MDPs) using the notion of ‘‘randomized
policies” and are solved as linear programs (Golabi et al., 1982; Golabi and Shepard, 1997; Murakami and Turnquist, 1997;
Smilowitz and Madanat, 2000). In this framework, individual facilities are not identified and are assumed to be homoge-
neous. As a result, optimal policies specify the same set (probability distribution) of maintenance actions for all facilities that
are in a given state, i.e., they are classified by their condition. Linear constraints can be included in these models to impose
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restrictions that apply to the system, e.g., resource availability. These models are attractive because the computational effort
to find optimal policies is independent of the number of facilities that comprise the system. However, omitting information
that identifies the individual facilities makes it impossible to capture functional relationships that link them. This, in turn,
constitutes an obstacle to providing effective decision support because significant benefits and costs in the management pro-
cess can be directly attributed to interdependencies that link a system’s facilities. To further emphasize this point consider
the following example:

Fig. 1 represents a hypothetical transportation network with two paths between node 1 (origin) and node 4 (destination).
We assume that the four links in the system are homogeneous with respect to their deterioration.

The fact that existing models classify facilities by their condition means that if links (1,2) and (1,3) are in the same con-
dition, an optimal policy would specify the same action for both of them. Also, the homogeneous cost structure means that it
costs exactly twice as much to apply an action to both links as it does to apply the action to either link individually. In prac-
tice, however, one expects maintenance policies to specify that (major) interventions on links (1,2) and (1,3) are performed
at different times in order to minimize the disruption to the system. Such policies would account for a (user) cost structure in
which disrupting the two links simultaneously costs much more than twice the cost of disrupting each link individually.
Links (1,2) and (1,3) are said to exhibit a substitutable relationship. For analogous reasons, one also expects that interven-
tions on links (1,2) and (2,4), or on links (1,3) and (3,4), would be synchronized. The links in each pair are said to exhibit a
complementary relationship.

Recent advances in optimization theory, coupled with ever increasing availability of powerful computing platforms, make
it possible to strike a more appealing and useful balance of capturing realism and ensuring tractability. In particular, as a step
to address the limitations described in the preceding paragraphs, we formulate the problem of obtaining optimal mainte-
nance policies for multifacility transportation systems as a quadratic program (QP). In the formulation, each facility’s dete-
rioration and demand/traffic are identified and represented as a linear system, i.e., an autoregressive moving average model
with exogenous inputs (ARMAX) model. The model explicitly captures the bidirectional relationship between demand and
deterioration. That is, the state of a facility, i.e., its condition or capacity, impacts the demand/traffic. The elements that com-
prise the system are linked because the state of a facility can impact the demand at other facilities. These relationships are
captured by the specification of the cross-elasticities of demand. Simultaneously, demand/traffic determines a facility’s dete-
rioration rate. The quadratic objective can be used to capture nonlinearities in cost terms, which may, for example, reflect
costs associated with congestion, vehicle wear and tear, and scale of maintenance activities. In addition to presenting the
framework, we provide a series of numerical examples to illustrate its advantages. The numerical results illustrate how net-
work topology and traffic patterns are key determinants of the structure of optimal maintenance policies.

The remainder of the paper is organized as follows: Section 2 provides an overview of maintenance optimization models
for multifacility transportation systems. The proposed model is presented in Section 3. In Section 4, we provide numerical
examples to illustrate the appealing features of the proposed model. Conclusions and directions for future work are dis-
cussed in Section 5.

2. Related work

The wide use and acceptance of finite (state and action) MDP formulations for periodic review maintenance optimization
problems means that perhaps the most natural way to develop a framework for systems of interdependent facilities is to
consider multidimensional MDP formulations for the problem. In the management science literature, these types of models
are referred to as Parallel Machine/Equipment Replacement Problems (Vander Veen, 1985; Jones et al., 1991; McClurg and
Chand, 2002; Chen, 1998; Childress and Durango-Cohen, 2005). These formulations provide an attractive framework to mod-
el interdependencies because the state and action space, as well as the deterioration process of each facility in the system is
fully identified. In addition, there is a great deal of flexibility in terms of specifying M&R costs. Unfortunately, the fact that
the state and action spaces are discrete, leads to significant computational problems in solving and analyzing such models.
These difficulties are well-known and referred to as the ‘‘curse of dimensionality”. The cause of these problems is that solu-
tion approaches for MDPs require enumerating all possible interventions for every system state and for every decision-mak-
ing stage. Because the state and action spaces are discrete, the total numbers of possible system states and interventions
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Fig. 1. Hypothetical transportation network.
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increase exponentially with the number facilities in the system. This consideration makes the approach impractical, even for
transportation systems with small numbers of facilities.2

The computational difficulties associated with multidimensional MDP formulations have motivated the development of
other approaches to address maintenance optimization problems for systems of interdependent facilities. Comprehensive
reviews are presented in Thomas (1986), Cho and Parlar (1991) and Dekker et al. (1997). They classify the models based
on the possible interdependencies between the facilities that comprise a system, which can be structural/functional, stochas-
tic or economic. Functional dependence refers to situations where the successful operation of a system requires the success-
ful operation of a minimum number of different types of components, i.e., the reliability of the system depends on the
reliability of its components. In the context of maintenance optimization, system (or component) failures present opportu-
nities to inspect, maintain, repair or replace both failed and functional components. Stochastic dependence refers to situa-
tions where the time-to-failure distributions of different components are dependent (either due to interactions or because
they are influenced by similar factors, e.g., environment or loading). This means that knowledge about the condition (or fail-
ure) of a subset of the components provides an opportunity to update the time-to-failure distributions and the maintenance
policy for other components. Finally, economic dependence refers to situations where the components of a system are linked
by resource constraints or level-of-service requirements, or by the system-wide cost-benefit structure, i.e., the total cost of
applying actions on a set of components can be different than the sum of the individual component costs. As an example of
economically dependent components, consider a system in which the maintenance of each component requires preparatory
or set-up work that can be shared when several components are maintained simultaneously.

The facilities that comprise transportation systems, simultaneously exhibit the three types of interdependencies de-
scribed above. These interdependencies derive from the spatial distribution of facilities within the system, i.e., the network’s
topology, and from the trip distribution and the ensuing traffic flow. These relationships, in turn, have economic implica-
tions, and thus, our objective is to develop system-level maintenance policies for multifacility transportation systems. In
addition to the review papers cited above, Durango-Cohen and Sarutipand (2007) and Sarutipand (2008) provide compre-
hensive reviews of applications in the management of transportation systems. Generally, models in the literature have fo-
cused on capturing economic dependencies, such as the ones described in the previous paragraph or such as resource-
availability constraints or level-of-service requirements.

In this paper, we propose a maintenance optimization model to capture functional relationships, such as the complemen-
tary and substitutable relationships described in the example presented in Section 1. In the context of transportation sys-
tems, functional dependencies refer to situations where the state of a facility, and therefore its ability to perform the
functions for which it was designed and built, impacts (either positively or negatively) the ensuing demand at another facil-
ity. Two important observations about functional dependencies between facilities in transportation systems are: (i) That the
relationships tend to be weaker than the reliability example presented above, e.g., generally a facility in a poor/failed state
does not eliminate the demand on other facilities (or on itself); and (ii) that traffic/demand, in turn, causes the state of a
facility to deteriorate, i.e., the relationship between demand and facility state is bidirectional.

Two approaches have appeared in the literature to capture functional interdependencies in the context of maintenance of
transportation systems. These approaches exemplify the modeling tradeoffs of realism vs. tractability. The first, a bottom-up
or operational approach, where the impact of maintenance interventions on demand is evaluated through traffic simulation.
Uchida and Kagaya (2006) and Ouyang (2007) are recent, and perhaps, the most representative studies employing this ap-
proach. Uchida and Kagaya (2006) develop a probit-based stochastic (and static) user equilibrium assignment framework.
The effect of maintenance is captured in a generalized cost function that includes costs associated with delays caused by
capacity reduction during interventions. In part, as a result of the details included in the traffic simulation, e.g., the duration
of a given intervention, the framework does not lend itself to analytical (or direct numerical) solutions of the underlying
maintenance optimization problem, and in turn, motivated the authors to develop a simulation–optimization procedure
to select maintenance policies. Ouyang (2007), on the other hand, provides a different balance of the aforementioned trade-
offs. In particular, he proposes a model where a facility’s state (condition and traffic) determines link travel times and de-
mand, which is estimated with a deterministic and static user equilibrium assignment model. In this framework, the
traffic simulation model is less detailed, but can be integrated into a multidimensional dynamic programming formulation
for the maintenance optimization problem. To overcome the ‘‘curse of dimensionality” the author presents an efficient meth-
od that relies on constructing an approximation of the value function using a finite number of basis functions.

In this paper, we consider a top–down or strategic approach that builds on Friesz and Fernandez (1979), who present a
multidimensional control model that captures the relationship between demand and facility state. In particular, the effect of
facility state on demand is captured by specifying the corresponding elasticity. The model presented in Section 3 can be
interpreted as a multifacility generalization of Friesz and Fernandez (1979), where the effect of a facility’s state on the de-
mand at another facility is captured by the corresponding cross-elasticities of demand. To deal with the computational dif-
ficulties that arise in solving the ensuing maintenance optimization problem, rather than considering a generic control
framework such as the one proposed by Friesz and Fernandez (1979), we consider a discrete-time problem, and assume that

2 Childress and Durango-Cohen (2005), for example, show how the solution to a modest, single-stage PMRP with 15 facilities, 5 condition-states and 2
actions for each facility, requires solving a linear program with over 15 thousand variables and over 77 million constraints. This consideration is important
given the size of transportation systems. Golabi and Pereira (2003), for example, recently developed a pavement management system for a road network with
over 40 thousand sections.
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the dynamics of the process are linear, and that the cost functions can be represented (or approximated) by second order
polynomials. This approach is similar in spirit to the approximation method used by Ouyang (2007). Moreover, we have
successfully used the framework in the analysis of closely-related maintenance optimization problems. Specifically, Duran-
go-Cohen and Tadepalli (2006) consider maintenance optimization for single facilities where multidimensional arrays of
condition data are generated periodically. Durango-Cohen and Sarutipand (2007) consider a multifacility problem where
maintenance decisions for the components are linked by a cost structure that captures either benefits associated with
resource and personnel delivery when adjacent facilities are maintained simultaneously or costs associated with simulta-
neous disruption of substitutable links.

3. Model formulation

We consider the problem of managing, i.e., finding an optimal maintenance policy for a transportation system that con-
sists of N facilities over a planning horizon of T periods. The variables in the model are as follows:

yn
t : Decision variable representing the (intensity of the) intervention that facility n receives during period t. The set of

interventions for the system during t is collected in the vector Yt, where Yt � ½y1
t ; y

2
t ; . . . ; yN

t �
0.3

xn
t : State variable representing facility n’s condition at the start of period t. Similarly, Xt � ½x1

t ; x
2
t ; . . . ; xN

t �
0.

qn
t : State variable representing the demand/traffic on facility n during tðQ t � ½q1

t ; q
2
t ; . . . ; qN

t �
0Þ.

un
t : State variable representing facility n’s effective capacity during tðUt � ½u1

t ;u
2
t ; . . . ;uN

t �
0Þ.

qn
t ;gn

t : Variables used to track facility n’s effective capacity deficit/surplus. Following a similar convention,
~qt � ½q1

t ;q2
t ; . . . ;qN

t �
0 and ~gt � ½g1

t ;g2
t ; . . . ;gN

t �
0.

To simplify the presentation, we define the parameters/coefficients used in the formulation in the context of describing
the equations in the model. Thus, the problem of obtaining an optimal maintenance policy can be written as follows:

Minimize :
XT

t¼1

dt�1PðXt ;Q t ;~qt ;YtÞ þ dTXðXTþ1Þ ð1Þ

Subject to :

xn
tþ1 ¼ gn

x xn
t � hnyn

t þ kn
qqn

t þ kn
x ; n ¼ 1; . . . ;N; t ¼ 1; . . . ; T ð2Þ

qn
tþ1 ¼ gn

qqn
t þ

XN

i¼1

kni
x xi

tþ1 þ
XN

i¼1

kni
u ui

tþ1 þ kn
q; n ¼ 1; . . . ;N; t ¼ 1; . . . ; T � 1 ð3Þ

un
t ¼ jn � wnyn

t ; n ¼ 1; . . . ;N; t ¼ 1; . . . ; T ð4Þ
qn

t � un
t ¼ qn

t � gn
t ; n ¼ 1; . . . ;N; t ¼ 1; . . . ; T ð5Þ

xn
1 ¼ x̂n

1; n ¼ 1; . . . ;N ð6Þ
qn

1 ¼ q̂n
1; n ¼ 1; . . . ;N ð7Þ

xn
t ; q

n
t ;u

n
t ;q

n
t ;g

n
t P 0 ð8Þ

The objective function presented in Eq. (1) corresponds to the total discounted social cost, i.e., user plus agency costs, of man-
aging the transportation system. We assume that the discount factor, d, is defined over the open interval (0,1). P(�) is the
period cost function and X(�) is the salvage value function. We assume that both P(�) and X(�) can be represented or approx-
imated by second-order polynomials, and in particular consider the following specifications:

PðXt;Qt ;~qt; YtÞ ¼ Y 0tAYt þ X0tBQt þ Q 0tCYt þ~q0tD~qt ð9Þ
XðXTþ1Þ ¼ X 0Tþ1LXTþ1 ð10Þ

where A, B, C, D, and L are N � N diagonal matrices. The elements of these cost functions are discussed in Section 3.1.
The constraints in the model are used to represent the dynamics of the managerial process. In particular:

� Equation set (2) describes the deterioration of the facilities that comprise the system. The coefficients gn
x ;h

n
; kn

q , respec-
tively capture the effect of previous condition, maintenance and traffic on the subsequent condition of facility n:kn

x cap-
tures the effect of exogenous factors, e.g., weather, on facility n’s deterioration rate.

� Equation set (3) describes the demand/traffic on the facilities in the system. The parameter gn
q captures the historical

effect. kn
q captures the rate of change that is based on factors other than the variables in the model. Significantly, we note

that the traffic on a given link is sensitive both to its own condition and effective capacity, as well as to the condition and
effective capacity of the other facilities in the system. This dependency is captured through the coefficients kni

x and kni
u ,

3 The notation V 0 is used to represent the transpose of a vector/matrix V.
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which correspond to the elasticities of demand with respect to condition and effective capacity. The actual signs of these
coefficients depend on the network’s structure and trip distribution. In particular, for the coefficients kni

u , positive signs
apply to complementary facilities and negative signs to substitutable facilities. The signs are opposite for the coefficients
kni

x .
� Equation set (4) is used to set facility n’s effective capacity (in period t) to a nominal level, jn, minus an amount that is

proportional to the magnitude/intensity of the intervention it receives during t. wn is the coefficient that describes this
relationship.

� The next set of equations, (5), are used to track the utilization of the facilities in the system. In particular, qn
t and gn

t are set
to account for deficits/surpluses in effective capacity. A positive qn

t indicates a capacity deficit in facility n during t, and is
associated with a congestion cost captured in the period cost function P(�).

� The equations in (6) and (7) are used to specify the system’s initial condition and traffic. Facility n’s initial condition and
traffic are denoted x̂n

1 and q̂n
1, respectively.

� Finally, equation set (8) imposes logical restrictions on the model’s variables.

Prior to continuing with the description, we discuss some of the assumptions/limitations embedded in the model. In par-
ticular, we note that:

� Continuous decision variables can be interpreted as maintenance rate or as an investment level. This interpretation is con-
sistent with earlier models in the field (cf. (Friesz and Fernandez, 1979)) and is appropriate for tactical and strategic mod-
els, which might, for example, be used for budgeting.

� The quadratic cost structure is not overly restrictive because, for example, it is possible to obtain optimal maintenance
policies for general classes of continuous cost functions by solving a sequence of problems. In each problem the cost func-
tion is approximated by a second-order Taylor Series expanded about a different point. The procedure is analogous to the
Newton–Raphson method for solving systems of equations/optimization problems and is discussed further in Dreyfus
(1977).

� The deterministic linear systems used to represent deterioration and demand in Eqs. (2) and (3), respectively, correspond
to simple forms of AutoRegressive Moving Average with eXogenous inputs (ARMAX) models.4 These models provide a con-
venient, flexible and rigorous framework to formulate and estimate dynamic models. Indeed, preliminary statistical analysis
in the context of formulating and estimating pavement deterioration models are encouraging (Chu and Durango-Cohen,
2007; Chu and Durango-Cohen, 2008). Traffic simulation/assignment provides a possible framework to generate the data
needed to estimate the parameters, i.e., the elasticities, to specify the demand models. It is important to note, however, that
the assumptions embedded in ARMAX models may not be universally valid, e.g., that the effect of interventions is linear and
additive in the context of deterioration modeling, or that the relationship between traffic and capacity is linear in the context
of demand modeling. Even though there is flexibility to (partially) address some of the aforementioned limitations, it is
important to realize that the ARMAX framework may be inadequate in certain situations. Thus, the use of ARMAX models
should be interpreted as analogous to the use of linear programming, even though most realistic problems probably do
not exhibit the linear structure that is assumed.

� Our primary objective in this paper is to develop a framework that captures the effect of economic and demand inter-
dependencies and of heterogeneity on optimal intervention policies. To simplify the presentation, we assume that facil-
ity deterioration and demand process are deterministic, i.e., kn

x and kn
q are deterministic. This assumption reduces the

generality of the framework, but leads to an optimization problem that is both flexible enough to capture interdepen-
dencies and heterogeneity, and that is practical for systems with large numbers of facilities. To justify the latter, we note
that (i) recent advances in optimization theory and in computational power allow for the solution of large-scale qua-
dratic programs, and that (ii) the number of parameters in the model increases as a polynomial function of the number
of facilities in the system (i.e.: the number of parameters is OðN2Þ). In contrast, the constrained MDP is practical but
inflexible, i.e., the number of parameters and computational effort to find optimal policies are both small, but it is
not possible to capture interdependencies or heterogeneity. Finally, the multidimensional MDP is flexible but impracti-
cal. While it offers the most flexibility, the number of parameters that require estimation, as well as the computational
effort increase exponentially with the number of facilities that comprise the system. We also think it is appropriate to
raise the following points:
– The assumption of deterministic deterioration has been used in previous models in the literature;
– Recent statistical studies such as Archilla and Madanat (2000); Prozzi and Madanat (2002) have shown that a large

fraction of the variability in infrastructure deterioration should be attributed to heterogeneity among facilities, as
opposed to aleatory uncertainty. Constrained MDPs, unnecessarily, attribute all of the variability to aleatory uncer-
tainty. The proposed model (unnecessarily) attributes all of the variability to heterogeneity. Clearly, both are
extremes and the ideal model lies somewhere in between; and

4 Simple extensions of these models would involve adding lagged dependent variables to capture the effect of historical trends on condition or demand.
Considering non-stationary models (with time-dependent coefficients), or including additional exogenous variables are examples of other possible
generalizations.
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– The solution to optimization of problems whose dynamics are governed by stochastic linear systems and whose
objective is quadratic, i.e., stochastic linear-quadratic regulators, is discussed in references such as Bertsekas
(1995). Using this general framework for maintenance optimization would seem to be an important direction for
research.

In the following subsection, we discuss the specification of the cost components in the model.

3.1. Cost function specification

We specify a period cost function, P(�) that consists of three elements that capture costs incurred by both agencies or
users. These elements are:

Maintenance costs: These costs correspond to the sum of costs associated with maintenance of the facilities in the system.
In period t, these costs can be written as5:

XN

n¼1

ðannðyn
t Þ

2 þ cnnqn
t yn

t Þ ð11Þ

The first term corresponds to the direct maintenance costs. The second term corresponds to the traffic disruption costs asso-
ciated with the set of interventions across the system. We assume ann > 0, "n, which means that the costs of an intervention
increase (at an increasing rate) with the intensity of the maintenance rate, yn

t . We also assume cnn > 0, "n, meaning that the
disruption costs incurred by the users is increasing with the maintenance rate and the traffic.

Vehicle operating costs: These are the costs incurred by the users that are associated with facility condition, e.g., vehicle
wear-and-tear. Assuming bnn > 0, "n means that the costs increase as facility condition worsens and are proportional to traf-
fic. These costs can be written as:

XN

n¼1

bnnxn
t qn

t ð12Þ

Congestion costs: These terms capture costs associated with travel time and other consequences associated with deficits in
the effective capacity of the facilities that comprise the system. These costs can be written as:

XN

n¼1

dnnðqn
t Þ

2 ð13Þ

Assuming dnn > 0, "n means that the congestion costs increase (at an increasing rate) with the magnitude of the capacity
deficit.

In addition, we consider a salvage value function that only depends on the terminal condition of the system. The salvage
value function can be written as follows:

XN

n¼1

lnnðxn
t Þ

2 ð14Þ

4. Numerical examples

In this section, we present examples to illustrate maintenance policies obtained with the proposed model. Our objectives
are to show how demand interdependencies influence optimal policies, and to show that the proposed model has appealing
features that elude existing maintenance optimization models for transportation systems. We begin this section by consid-
ering simple transportation systems comprised of two links and one origin-destination pair.6 The systems: substitutable and
complementary are presented in Figs. 2a and b, respectively. Later in the section, we consider more general, examples to show
how the framework can be extended, as well as to discuss difficulties.

We solved the QPs to obtain the numerical results with a robust nonlinear optimization solver, KNITRO. This solver is
publicly available online through the NEOS servers located at Northwestern University and the Argonne National Laboratory.
Further information is available through http://www-neos.mcs.anl.gov/neos/solvers/nco:KNITRO/AMPL.html.

To highlight the impact of demand interdependencies on the structure of optimal maintenance policies, we consider facil-
ities that are homogeneous in their capacity, deterioration and demand processes. We also examine how interdependencies
impact the other state variables: demand, condition and capacity, when the optimal maintenance policies are implemented.

5 The notation aij is used to represent the i � j element of matrix A.
6 The reader interested in computational issues associated with solving (large-scale) quadratic programs is referred to Gil et al. (1981).
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Intuitively, one expects different optimal maintenance policies for different network topologies and trip distributions. In
the following section, we first compare optimal policies for the networks presented in Fig. 2. We also conduct a sensitivity
analysis to develop qualitative insights about how parametric and topological changes affect the optimal policies, system
condition, and traffic over the networks. The parameters used in the study are not representative of any particular facility,
although the situation considered is ‘‘inspired” by a pavement management situation. To simplify the interpretation of the
numerical results we consider a problem over a 25-period planning horizon, which in conjunction with other suitable
choices leads to optimal policies that converge to a steady-state, i.e., the policy prescribes periodic interventions for the links
in the system. Such policies provide a convenient way to contrast the results for the different cases. The discount factor d, is
set to 1/1.05, which corresponds to a discount rate of 5%. The parameters used to specify instances of the model are pre-
sented in Table 1.

From the above specification we note that:

� Together (4) and (8) imply an upper bound on the decision variables, yn
t , of 100.

� We set the initial condition of every facility in the system to new condition. The demand in each facility is set to 50% of the
physical capacity, 100.

� Temporal changes in condition, xn
t � xn

t�1, are assumed to be independent of the history of the deterioration process. Also,
the constant deterioration rate of 10 is such that, absent loading and maintenance, it takes 10 periods to deteriorate from
the best condition state, 0, to the worst, 100. This is intended to mimic the PCI scale, which has a range of 100.

� For simplicity, in the numerical examples presented below, we set kni
u –0 and kni

x ¼ 0;n; i ¼ 1;2. Thus, we are assuming
demand is sensitive to effective capacity and insensitive to condition.

4.1. Basic networks

In this section we use the model to obtain maintenance policies for the two networks shown in Fig. 2. In particular, we set
the elasticities in the model to capture the two types of functional relationships that are illustrated. We begin by considering
the case of complementary facilities. The results for the complementary network are presented in Fig. 3. We observe that the
optimal steady-state policy specifies identical interventions for both links, i.e., an optimal maintenance rate of 46 units/per-
iod for each of the facilities. As a result, the state variables in the model (traffic, condition and capacity) converge to identical
levels for the two facilities. We observe that the structure of the optimal maintenance policy, i.e., the fact that both facilities
receive maintenance simultaneously, applies for cnn P 0,n = 1,2. However, the magnitude of the maintenance and of the
other variables changes. The results in Fig. 3 are for cnn = 5,n = 1,2.

To illustrate how a network’s topology influences the structure of optimal maintenance policies, we apply the model to
the substitutable network presented in Fig. 2b. We set the elasticities as follows: knn

u ¼ 0:2;n ¼ 1;2 and kni
u ¼ �0:2;n–i ¼ 1;2.

Table 1
Parameter specification for numerical examples.

Cost parameters Constraint parameters

ann, "n 1 gn
x ;8n 1

bnn, "n 1 hn, "n 1

cnn, "n Variable kn
q ;8n 0.5

dnn, "n 1 kn
x ;8n 10

lnn, "n 0 gn
q ;8n 0

kni
x ;8n; i Variable

kni
u ;8n; i Variable

kn
q ;8n 50

jn, "n 100

wn, "n, 1

x̂n
1;8n 0

q̂n
1;8n 50

A B

Link 1 

Link 2 

A C
Link 1 Link 2 

B

(a) Substitutable Network (b) Complementary Network

Fig. 2. Basic network types.
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Negative cross-elasticities are used to capture the substitutable relationship between the links. In these cases, the results are
such that when the traffic disruption impact is ‘‘low”, cnn 6 4, n = 1, 2, the optimal policy is similar in structure to the policy
for the complementary network, i.e., the facilities are maintained simultaneously. On the other hand, when the impact is
‘‘high”, cnn > 4, the optimal policy specifies alternating interventions between the two facilities. As an example and to con-

Fig. 3. Optimal solution of the complementary network.

Fig. 4. Optimal policies for substitutable network with high disruption impact.

Fig. 5. Optimal condition for substitutable network with high disruption impact.

Fig. 6. Optimal effective capacities for substitutable network with high disruption impact.
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trast with the above results for the complementary network, we set cnn = 5, n = 1, 2 and present the results in Fig. 4. We ob-
serve that when the disruption impact is high, applying simultaneous interventions causes significant traffic delay due to
disruption/loss of throughput and may also lead to congestion when the amount of traffic during the maintenance period
is over the effective capacity of the facilities. As a result, the optimal policy specifies coordinated interventions where the
facilities are maintained in alternating periods. The ensuing intervention schedule results in cycles in the levels of the state
variables in the model, as shown in Figs. 5–7.

Another appealing feature of the optimal maintenance policies is that they lead to coordination between the variables in
the model. In particular, the optimal policy leads to situations where high traffic is observed on facilities in good condition
where there are no interventions. This, in turn, simultaneously reduces user costs (associated with vehicle wear-and-tear), as
well as traffic disruption costs.

Next, we consider the effect of changing the demand’s sensitivity to effective capacity on the results. In particular, we set
cnn = 5 and vary the elasticities, knn

u ;8n and �kni
u ;8n; i, from 0 to 0.5 in increments of 0.05. The results are presented in Figs. 8

and 9.

Fig. 7. Optimal amount of traffic for substitutable network with high disruption impact.

Fig. 8. System traffic condition with variation of sensitivity level to congestion at cnn = 5.

Fig. 9. The condition with variation of sensitivity level to congestion at cnn = 5.
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Both figures display two regimes: For elasticities with magnitudes below 0.15, optimal policies specify a maintenance
rate of 35 units/period for both facilities. Such interventions restore the condition of each of the facilities in each period,
and result in associated state variables that are maintained at the same level for both facilities. For elasticities above 0.15,
the structure of optimal maintenance policies specifies cyclical interventions for the two facilities. In this regime, facility
condition is restored in alternating periods. The magnitude of the intervention is 70. Figs. 8 and 9 show the magnitudes
of the associated state variables. In consecutive periods and for a given elasticity, the facilities alternate between the upper
and lower bounds that are presented in the figures. We observe that as the elasticity increases, meaning that additional traf-
fic oscillates between the two facilities, the worse condition level, XUB, increases. Because the average per-period demand
that each facility serves is 50, explains why the magnitude of the interventions is 70. From Fig. 8 we observe that for the
given for the nominal capacities and optimal interventions, congestion is induced (and an associated cost is incurred) in
cases where the elasticity is low, reflecting users’ lack of interest to consider an alternative route.

Fig. 10. Network with redundant links.

Fig. 11. Redundancy (a) Medium disruption impact (b) High disruption impact (c) High disruption impact when traffic are more sensitive to condition than
effective capacity.
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4.2. Additional numerical examples

In this section, we consider additional numerical examples that are intended to illustrate how the proposed framework
can be generalized to more complex networks. We also discuss some difficulties. In particular, we consider the systems pre-
sented in Fig. 10 consisting of three facilities.

In the analysis of the system presented in Fig. 10a we consider three situations. The results are presented in Fig. 11. In the
first two situations (Fig. 11a and b), we ignore demand sensitivity to condition, and set the demand elasticities with respect
to capacity as follows: knn

u ¼ 0:2;n ¼ 1;2;3 and kni
u ¼ �0:1;n–i ¼ 1;2;3. These elasticities represent a situation where traffic

on a facility is less sensitive to capacity in alternative facilities (than to its own capacity). Fig. 11a is for disruption costs
where 5 6 cnn 6 7,n = 1, 2, 3. Fig. 11b is for cnn > 7, n = 1,2,3. The main observation is that higher disruption costs lead to
an optimal maintenance policy where the interventions between the three facilities are coordinated. The upper bound on
the magnitude of an intervention means that, when the steady-state is reached, facilities are maintained in 2 out of every
three periods.

In Fig. 11b we observe that when an intervention is applied on a facility, the swing level traffic that it serves is diverted
equally onto the other two facilities without regard to their condition. Fig. 11c presents the results for a case where demand
is also sensitive to condition. In particular, we set knn

x ¼ �0:5; n ¼ 1;2;3 and kni
x ¼ 0:25; n–i ¼ 1;2;3. In this case the state

variables exhibit cycles that are symmetric for the three facilities that comprise the system.
In the analysis of the system presented in Fig. 10b, we set the elasticities as shown in Table 2.
The results for this case are presented in Fig. 12, where we observe cycles where the complementary facilities 1 and 2 are

maintained simultaneously in periods where the substitutable facility, 3 is not being maintained.

5. Conclusions and directions for future work

We present a quadratic programming formulation for maintenance optimization of multifacility transportation systems.
The proposed model provides a computationally-tractable framework that can be used to capture functional interdependen-
cies that link facilities in transportation systems. In the formulation, each facility’s deterioration and demand/traffic are iden-
tified and represented as a linear system, i.e., an autoregressive moving average model with exogenous inputs (ARMAX)
model. The model explicitly captures the bidirectional relationship between demand and deterioration. That is, the state
of a facility, impacts the demand/traffic, which in turn, determines the rate at which facilities deteriorate. The elements that
comprise the system are linked because the state of a facility can impact the demand at other facilities. These relationships
are captured by the specification of the cross-elasticities of demand. The quadratic objective can be used to capture nonlin-
earities in cost terms, which may, for example, reflect costs associated with congestion, vehicle wear and tear, and scale of
maintenance activities. Although not used in the current paper, second order cost terms can also be used to capture pairwise
economic dependencies, such as reductions in resource and personnel delivery costs when adjacent facilities are maintained
simultaneously (cf. Durango-Cohen and Sarutipand, 2007).

In addition to presenting the framework, we provide a series of numerical examples to illustrate its advantages. The
numerical results illustrate how network topology, traffic patterns, and significantly elasticity and cross-elasticity of demand

Table 2
Elasticities of demand.

Capacity Condition

knn
u ; n ¼ 1;2;3 0.2 knn

x ;n ¼ 1;2;3 �0.5
k1;2

u ¼ k2;1
u 0.1 k1;2

x ¼ k2;1
x �0.25

k1;3
u ¼ k3;1

u �0.1 k1;3
x ¼ k3;1

x 0.25
k2;3

u ¼ k3;2
u �0.1 k2;3

x ¼ k3;2
x 0.25

Fig. 12. Optimal solution for three-link network with complementary.
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are key determinants of the structure of optimal maintenance policies. Specifically, the results provide insight about situa-
tions where it is optimal to coordinate (synchronize or alternate) maintenance interventions for clusters of facilities. Addi-
tional parametric analysis where we consider the impact of road-durability/structural-strength, deterioration rate, different
network topologies, and larger network sizes are presented in Sarutipand (2008).

In terms of directions for future work, perhaps the most significant step would be to investigate the validity of the
assumptions that deterioration and demand are adequately represented as ARMAX models (as shown in Equation sets (2)
and (3) in the formulation). Preliminary statistical analysis and results in the context of formulating and estimating pave-
ment deterioration models are encouraging (Chu and Durango-Cohen, 2007; Chu and Durango-Cohen, 2008). The appropri-
ateness of using ARMAX models to represent demand/traffic, however, is still an open question. Traffic simulation/
assignment may provide an interesting framework to address this issue, although embedded assumptions, e.g., (effect of
road capacity or condition) on travel time estimates, criteria to select routes, etc., might impact the conclusions. Our conjec-
ture is that the appropriateness of ARMAX models to represent demand depends critically on network structure/topology,
traffic volume, and trip distribution, e.g., the linear approximation is probably valid for the single-origin, single-destination,
two-link substitutable network presented in Fig. 2.
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