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The dispersal of individuals of a species is the key driving force of var-
ious spatiotemporal phenomena which occur on geographical scales. It
can synchronize populations of interacting species, stabilize them, and
diversify gene pools.1–3 The geographic spread of human infectious dis-
eases such as influenza, measles and the recent severe acute respiratory
syndrome (SARS) is essentially promoted by human travel which occurs
on many length scales and is sustained by a variety of means of trans-
portation4–8. In the light of increasing international trade, intensified
human traffic, and an imminent influenza A pandemic the knowledge
of dynamical and statistical properties of human dispersal is of funda-
mental importance and acute.7,9,10 A quantitative statistical theory for
human travel and concomitant reliable forecasts would substantially im-
prove and extend existing prevention strategies. Despite its crucial role,
a quantitative assessment of human dispersal remains elusive and the
opinion that humans disperse diffusively still prevails in many models.11

In this chapter we will report on a recently developed technique which
permits a solid and quantitative assessment of human dispersal on ge-
ographical scales.12 The key idea is to infer the statistical properties
of human travel by analysing the geographic circulation of individual
bank notes for which comprehensive datasets are collected at online bill-
tracking websites. The analysis shows that the distribution of traveling
distances decays as a power law, indicating that the movement of bank
notes is reminiscent of superdiffusive, scale free random walks known as
Lévy flights.13 Secondly, the probability of remaining in a small, spa-
tially confined region for a time T is dominated by heavy tails which
attenuate superdiffusive dispersal. We will show that the dispersal of
bank notes can be described on many spatiotemporal scales by a two
parameter continuous time random walk (CTRW) model to a surprising
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accuracy. We will provide a brief introduction to continuous time ran-
dom walk theory14 and will show that human dispersal is an ambivalent,
effectively superdiffusive process.

The notion of dispersal in ecology usually refers to the movement of

individuals of a species in their natural environment.1,3 The statistical

properties of dispersal can be quantified by the dispersal curve p∆t(∆x).

The dispersal curve reflects the relative frequency of geographic displace-

ments ∆x which are traversed within a given period of time ∆t.∗ A large

class of dispersal curves (for example, exponential, gaussian, stretched ex-

ponential) exhibit a characteristic length scale.15 That is, when interpreted

as the probability of finding a displacement of length ∆x, a length scale can

be defined by the square root of second moment, i.e. σ =
√

〈∆x2〉. The

existence of a typical length scale often justifies the description of dispersal

in terms of diffusion equations on spatiotemporal scales larger than ∆t

and σ.16 Because, if single displacements are sufficiently uncorrelated the

probability density W (x, t) of having traversed a total displacement x after

time t is a Gaussian which obeys Fick’s second law:

∂tW = D∂2
xW, (5.1)

where D = σ2/∆t is the diffusion coefficient. This result is a consequence

of the central limit theorem17 and does not depend on the precise form of

the short time dispersal curve as long as the variance
〈

∆x2
〉

is finite.

In population dynamical systems this type of diffusive dispersal is quite

frequently combined with a reaction kinetic scheme which accounts for

local interactions between various types of reacting agents, for example

various species in predator-prey systems. Sometimes groups of individuals

of a single species which interact are classified according to some criterion.

For instance in the context of epidemiology a population is often classified

according to their infective status.

In an approximation which neglects the intrinsic fluctuations of the

underlying reaction kinetics one obtains for these systems reaction-diffusion

equations, the most prominent example of which is the Fisher equation†,18

∂t u = λu(1 − u) +D∂2
xu, (5.2)

∗In ecological literature, the term “dispersal” is commonly used in the context of the
spatial displacement of individuals of a species between their geographical origin of birth
and the location of their first breeding place, a process which occurs on time scales of
the lifespan of the individuals. Here we use the term dispersal to refer to geographical
displacements that occur on much shorter timescales of the order of days.
†also referred to as the Fisher-Kolmogorov-Petrovsky-Piscounov equation.
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for the concentration u(x, t) of a certain class of individuals, a species etc.

A paradigmatic system which naturally yields a description in terms of

Eq. (5.2) and which has been used to describe to geographic spread of

infectious diseases is the SIS-model in which a local population of N in-

dividuals segregates into the two classes of susceptible S who may catch a

disease and infected I who transmit it. Transmission is quantified by the

rate α and recovery by the rate β.11 The reaction scheme could not be

simpler:

S + I
α
−→ 2I I

β
−→ S . (5.3)

In the limit of large population size N the dynamics can be approxi-

mated by the set of differential equations

∂t S = −αIS/N, ∂t I = αIS/N − βI. (5.4)

Assuming that the number of individuals is conserved (i.e. I(t)+S(t) = N)

and that disease transmission is more frequent than recovery (α > β) one

obtains for the rescaled relative number of infected u(t) = αI(t)/N(α− β)

a single ordinary differential equation (ODE) describing logistic growth:

∂t u = λu(1 − u), (5.5)

where λ = α− β. If, additionally reactants are free to move diffusively one

obtains Eq. (5.2) for the dynamics of the relative number of infected u(x, t)

as a function of position and time.

The popularity and success of the Fisher-equation and similar equations

in the field of theoretical biology can be ascribed to some extent to the

fact that they possess propagating front solutions and that qualitatively

similar patterns were observed in historic pandemics. The most prominent

example is the bubonic plague pandemic of the 14th century which crossed

the European continent as a wave within three years at an approximate

speed of a few kilometers per day. Aside from factors which are known to

play a role, such as social contact networks, age structure, inhomogeneities

in local populations and inhomogeneities in the geographic distribution of

the population, there is something fundamentally wrong with the diffusion

assumption on which this class of equations is based upon. Humans (with

the exception maybe of nomads) do not and never did diffuse on timescales

of their lifespan. A simple argument can be given why this cannot be so.

For a diffusion process the expected time for returning to the point of

origin is infinite19 (despite the fact that in spatial dimensions d ≤ 2 the

probability of returning is unity). It would not make much sense to have a
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home if the expected time to return to it is infinite. However, in the context

of the geographic spread of infectious diseases it does at times make sense

to employ reaction-diffusion equations. That is because the position of

what is passed from human to human, i.e. the pathogens, is what matters

and not the position of single host individuals. Unlike humans, pathogens

are passed from human to human and opposed to humans pathogens have

no inclination of returning. They disperse diffusively and a description in

terms of reaction-diffusion dynamics is justified, see Fig. (5.1).

Fig. 5.1. Human travel and the dispersal of pathogens. The gray areas depict home
ranges of individuals. By virtue of overlapping home ranges and inter-homerange travel
an infectious disease spreads in space. Although humans travel back and forth between
home ranges, pathogens spread continuously in space.

Recently the notion of long distance dispersal (LDD) has been estab-

lished in dispersal ecology,20 taking into account the observations that a

number of dispersal curves exhibit long, algebraic tails which forbid the

identification of a typical scale and thus a description of dispersal phenom-

ena based on diffusion equations. If, for instance, the probability density

of traversing a distance r in a given period of time ∆t decreases according

to

p∆t(r) ∼
1

r1+β
(5.6)

with a tail exponent β < 2, the variance of the displacement magnitude is

infinite and consequently no typical length scale can be identified. Power-

law distributions of this type are abundant in nature. Meteorite sizes,

city sizes, income and the number of species per genus follow power-law

distributions.21

In physics, random walk processes with a power-law single-step distri-

bution are known as Lévy flights.14,22–24 Due to the lack of scale in the

single steps, Lévy flights are qualitatively different from ordinary random
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walks. Unlike ordinary random walks the position XN =
∑N

n ∆xn after N

steps ∆xn scales with the number of steps according to

XN ∼ N1/β (5.7)

with β < 2. Thus, Lévy flights disperse “faster” than the ordinary N1/2

behavior exhibited by ordinary random walks; Lévy flights are superdiffu-

sive. Furthermore, the probability density for the position p(x, N) for Lévy

flights behaves asymptotically as

p(x, N) ∼ N−D/βLβ

(

x/N1/β
)

(5.8)

where D is the spatial dimension and the function Lβ is known as the sym-

metric Lévy-stable law of index β. This limiting function is a generalization

of the ordinary Gaussian and can be expressed by its Fourier-transform

Lβ(z) =
1

(2π)D/2

∫

dk e−iz·k−|k|β . (5.9)

The limiting value β = 2 corresponds to the Gaussian, the limiting

function for ordinary random walks. The lack of scale in a Lévy flight, its

superdiffusive nature and the geometrical difference between Lévy flights

and ordinary random walks are illustrated in figure 5.2. Lévy flights, and

superdiffusive random motion were observed in a variety of physical and

biological systems, ranging from transport in chaotic systems25 and tur-

bulent flows,26 to foraging patterns of wandering albatrosses27 and spider

monkeys.28

Nowadays, humans travel on many spatial scales, ranging from a few to

thousands of kilometres over short periods of time. The direct quantitative

assessment of human movements, however, is difficult, and a statistically

reliable estimate of human dispersal comprising all spatial scales does not

exist. Contemporary models for the spread of infectious diseases across

large geographical regions have to make assumptions on human travel. The

notion that humans travel short distances more frequently than long ones

is typically taken into account. Yet, the precise ratio of the frequency

of short trips and the frequency of long trips is not known and must be

assumed. Furthermore, it is generally agreed upon that human travel,

being a complex phenomenon, adheres to complex mathematical rules with

a lot of detail.

Recently, it was shown that the global spread of SARS in 2003 can

be reproduced by a model which takes into account nearly the entire civil
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Fig. 5.2. Ordinary random walks and Lévy flights. Left: The trajectory of an ordinary
random walk in two dimensions, equivalent to Brownian motion on large spatiotemporal
scales. Middle: Unlike Brownian motion, the trajectory of the two-dimensional Cauchy-
process, indexprocess!Cauchy i.e. a Lévy flight with Lévy exponent β = 1 exhibits local
clustering interspersed with long distance jumps. Right: The distance |XN | from the
starting point X0 = 0 of an ordinary random walk (lower trajectory) and a Lévy flight
(β = 1, upper trajectory) as a function of step number N . The dashed lines indicate the
scaling N1/2 and N1/β respectively. Clearly, the Lévy flight is superdiffusive.

aviation network.7,10 Despite the high degree of complexity of aviation

traffic, the strong heterogeneity of the network yields an unexpectedly nar-

row range of fluctuations, supporting the idea that reliable forecasts of the

geographic spread of disease is possible. Although the model successfully

accounts for the geographic spread on global scales, it cannot account for

the spread on small and intermediate spatial scales. To this end a com-

prehensive knowledge of human travel on scales ranging from a few to a

few thousand kilometers is necessary. However, collecting comprehensive

traffic data for all means of human transportation involved is difficult of

not impossible.

In a recent study,12,29 we circumvent the technical difficulty of mea-

suring human travel directly by using the dispersal of bank notes in the

United States. The key idea of the project is to use bank note dispersal as

a proxy for human travel. We collected data from the online bill-tracking

website www.wheresgeorge.com. The idea of this internet game, which

was initiated in 1998 by Hank Eskin, is simple. Individual bank notes

are marked by registered users and brought into circulation. When people

come into possession of such marked bank notes, they can register at the

website and report their current location and return the bank note into

circulation. Thus, registered users can monitor the geographical dispersal

of their money. Meanwhile, over 80 millions dollar bills have been regis-

tered and over 3 million users participate in the game. As bank notes are

primarily transported by traveling humans, we were able to infer the sta-
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tistical properties of human travel from the dispersal of bank notes with

high spatio-temporal precision.

Our analysis of human movement is based on the trajectories of a subset

of 464,670 dollar bills obtained from the website. We analyzed the dispersal

of bank notes in the United States, excluding Alaska and Hawaii. The core

data consists of 1,033,095 reports to the website. From these reports we

calculated the geographical displacements r = |x2−x1| between a first (x1)

and secondary (x2) report location of a bank note and the elapsed time T

between successive reports. The pairs of datapoints {ri, Ti} represent our

core dataset, from which the probability density function (pdf) W (r, t) of

having traveled a distance r after a time t can be estimated.

In order to illustrate qualitative features of bank note trajectories,

Fig. 5.3 depicts short time trajectories (T < 14 days) originating from

three major cities (Seattle, WA, New York, NY, Jacksonville, FL). Suc-

ceeding their initial entry, the majority of bank notes are reported next in

the vicinity of the initial entry location, i.e. r < 10 km (Seattle: 52.7%,

New York: 57.7% Jacksonville: 71.4%). However, a small yet considerable

fraction is reported beyond a distance of 800 km (Seattle: 7.8%, New York:

7.4%, Jacksonville: 2.9%).

From a total of N = 20, 540 short time displacements we measured the

probability density p(r) of traversing a distance r in a time interval δT

between one and four days. The result is depicted in Fig. 5.4. A total of

14, 730 (i.e. a fraction Q = 0.71) secondary reports occur outside a short

range radius Lmin = 10 km. Between Lmin and the approximate average

east-west extention of the United States Lmax ≈ 3, 200 km p(r) exhibits

power law behavior p(r) ∼ r−(1+β) with an exponent β = 0.59 ± 0.02. For

r < Lmin, p(r) increases linearly with r which implies that displacements

are distributed uniformly inside the disk |x2 − x1| < Lmin.

One might speculate whether the observed lack of scale in p(r) is not a

dynamic property of dispersal but rather imposed by the substantial spatial

inhomogeneity of the United states. For instance, the probability of travel-

ing a distance r might depend strongly on static properties such as the local

population density. In order to test this hypothesis, we have measured p(r)

for three classes of initial entry locations: highly populated metropolitan

areas (191 locations, local population Nloc > 120, 000), cities of intermedi-

ate size (1, 544 locations, local population 120, 000 > Nloc > 22, 000), and

small towns (23, 640 locations, local population Nloc < 22, 000) comprising

35.7 %, 29.1 % and 25.2 % of the entire population of the United States,

respectively. Fig. 5.4 also depicts p(r) for these classes. Despite systematic
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Fig. 5.3. Dispersal of bank notes on geographical scales. a: Relative logarithmic densi-
ties of population (cP = log10 ρP/ 〈ρP〉), reports (cR = log10 ρR/ 〈ρR〉) and initial entry
(cIE = log10 ρIE/ 〈ρIE〉) as functions of geographical coordinates. The shades of gray en-
code the densities relative to the nation-wide averages (3,109 counties) of 〈ρP〉 = 95.15,
〈ρR〉 = 0.34 and 〈ρIE〉 = 0.15 individuals, reports and initial entries per km2, respec-
tively. b: Short time trajectories of bank notes originating from three different places.
Tags indicate initial, symbols secondary report locations. Lines represent short time tra-
jectories with traveling time T < 14 days. The inset depicts a close-up of the New York
area. Pie charts indicate the relative number of secondary reports coarsely sorted by
distance. The fractions of secondary reports that occurred at the initial entry location
(dark), at short (0 < r < 50 km), intermediate (50 < r < 800 km) and long (r > 800
km) distances are ordered by increasing brightness. The total number of initial entries
are N = 524 (Seattle), N = 231 (New York), N = 381 (Jacksonville).

deviations for short distances, all distributions exhibit an algebraic tail with

the same exponent β ≈ 0.6. This confirms that the observed power-law is

an intrinsic and universal property of dispersal, the first experimental evi-

dence that bank note trajectories are reminiscent of Lévy flights and that
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Fig. 5.4. Quantitative analysis of bank note dispersal. Left: The short time dispersal
kernel. The measured probability density function p(r) of traversing a distance r in less
than T = 4days is depicted by squares. It is computed from an ensemble of 20, 540 short
time displacements. The dashed black line indicates a power law p(r) ∼ r−(1+β) with
an exponent of β = 0.59. Right: p(r) for three classes of initial entry locations (black
triangles for metropolitan areas, diamonds for cities of intermediate size, and circles for
small towns).

dispersal is superdiffusive.

However, the situation is more complex. If we assume that the dispersal

of bank notes can be described by a Lévy flight with a short time probability

distribution p(r) as depicted in Fig. 5.4, we can estimate the time Teq

for an initially localized ensemble of bank notes to reach the stationary

distribution (maps in Fig. 5.3). We assume that the Lévy flight evolves in

a two-dimensional region of linear extent L. Furthermore we assume that

the single step distribution for a vectorial displacement x of the random

walk can be approximated by

p∆t(x) = (1 −Q)δ(x) +QfδL(x). (5.10)

Here ∆t denotes the typical time between single steps, Q the fraction of

walkers which jump a distance d > δL and (1 − Q) the fraction which

remains in a disk defined by |x| ≤ δL. The function fδL(x) comprises the

power-law in the single steps, characteristic for Lévy flights:

fδL(x) = C δLβ|x|−(2+β) |x| ≥ δL. (5.11)

Inserting this into Eq. (5.10) one obtains that fδL(x) is normalized to unity

and that the normalization constant C is independent of the microscopic

length δL. The Fourier-transform of p(x) is given by p̃(k) = (1 − Q) +
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Qf̃δL(k).The Fourier-transform of the probability density function WN (x)

of the walker being located at a position x after N steps can be computed

in terms of p̃(k) according to

W̃N (k) = p̃(k)N ≈
(

1 −QδLβ|k|β
)N

≈ e−QN |δL k|β . (5.12)

The relaxation time in a confined region is provided by the lowest mode

kmin = L/2π. Inserted into (5.12) with N = t/∆t one obtains

Teq ≈ δT/Q (L/2πδL)
β

= 68 days. (5.13)

Thus, after 2 − 3 months bank notes should have reached the equilibrium

distribution. Surprisingly, the long time dispersal data does not reflect a

relaxation within this time.

Fig. 5.5. Long time dispersal of bank notes with an initial entry in Omaha, NE. Points
denote the location of the second report. Each bill travelled for a time greater than 100
days, with an average of 289 days. The dashed circle indicates the distance of 800 km
from Omaha.

Fig. 5.5 shows secondary reports of bank notes with initial entry at

Omaha, NE which have dispersed for times T > 100 days (with an average

time 〈T 〉 = 289 days). Only 23.6% of the bank notes traveled farther than

800 km, the majority of 57.3% travelled an intermediate distance 50 < r <

800 km and a relatively large fraction of 19.1% remained within a radius
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of 50 km even after an average time of nearly one year. From Eq. 5.13 a

much higher fraction of bills is expected to reach the metropolitan areas of

the West Coast and the New England states after this time. This indicates

that the simple Lévy flight picture for dispersal is incomplete. What causes

this attenuation of the dispersal?

A possible explanations of this effect is a strong impact of the spatial

inhomogeneity of the system. For instance, the typical time of rest in a

geographical region might depend on local properties such as the population

density. People might be less likely to leave large cities than e.g. suburban

areas.

Fig. 5.6. The relative proportion P0(t) of secondary reports within a short radius (r0 =
20 km) of the initial entry location as a function of time. Squares depict P0(t) averaged
over 25,375 initial entry locations. Triangles, diamonds, and circles show P0(t) for the
same classes as in Fig 5.4. All curves decrease asymptotically as t−ξ with an exponent
ξ = 0.6± 0.03 indicated by the solid line. Ordinary diffusion in two dimensions predicts
an exponent ξ = 1 (black dashed line). Lévy flight dispersal with an exponent β = 0.6 as
suggested by the short time dispersal kernel (Fig. 5.4) predicts an even steeper decrease,
ξ = 3.33 (dot-dashed line).

In order to address this issue we investigated the relative proportion

P i
0(t) of bank notes which are reported again in a small (20 km) radius of

the initial entry location i as a function of time (Fig. 5.6). The quantity
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P i
0(t) estimates the probability for a bank note of being reported at the ini-

tial location at time t a second time. In order to obtain reliable estimates

we averaged this quantity over the above classes of initial entry locations

(e.g. metropolitan areas, cities of intermediate size and small towns): For

all classes we found the asymptotic behavior P0(t) ∼ At−η with an expo-

nent η ≈ 0.60± 0.03 and a coefficient A. The observed difference in values

of the coefficient A reflects the impact of the inhomogeneity of the system,

i.e. bank notes are more likely to remain in highly populated areas. The

exponent η, however, is approximately the same for all classes which indi-

cates that waiting time and dispersal characteristics are universal and do

not depend significantly on external factors such as the population density.

Notice that for a pure two dimensional Lévy flight with index β the function

P0(t) scales as t−η with η = 2/β. For β ≈ 0.6 (as put forth by Fig. 5.4)

this implies η ≈ 3.33,19 i.e. a five fold steeper decrease than observed,

which clearly shows that dispersal cannot be described by a pure Lévy

flight model. The measured decay is even slower than the decay exhibited

by ordinary two-dimensional diffusion (η = 119). This is very puzzling.

What could be the reason behind the attenuation of dispersal? One

way of slowing down dispersal are long periods of rest. In as much as an

algebraic tail in the spatial displacements yields superdiffusive behavior, a

tail in the probability density ψ(∆t) for times ∆t between successive spa-

tial displacements of an ordinary random walk can lead to subdiffusion.

For instance, if ψ(∆t) ∼ ∆t−(1+α) with α < 1, the position of an ordinary

random walker scales according to X(t) ∼ t2/α.14 In combination with a

power-law in the spatial displacements this ambivalence yields a compe-

tition between long jumps and long rests and can be responsible for the

attenuation of dispersal.30

We test this idea of an antagonistic interplay between scale free dis-

placements and waiting times within the framework of the continuous time

random walk (CTRW) introduced by Montroll and Weiss.31 A CTRW con-

sists of a succession of random displacements ∆xn and random waiting

times ∆tn each of which is drawn from a corresponding probability density

function p(∆x) and ψ(∆t). Spatial and temporal increments are assumed

to be statistically independent. Furthermore, we assume that the spatial

distribution is symmetric, i.e. p(∆x) = p(|∆x|), and since the temporal

increments are all positive ψ(∆t) is single sided. After N iterations the

position of the walker and the elapsed time is given by XN =
∑

n ∆xn and

TN =
∑

n ∆tn. The quantity of interest is the position X(t) after time
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t. The probability density W (x, t) for this process can be computed in a

straightforward fashion14 and can be expressed in terms of the spatial dis-

tribution p(∆x) and the temporal distribution ψ(∆t). The Fourier-Laplace

transform of W (x, t) is given by

W̃ (k, u) =
1 − ψ̃(u)

u
(

1 − ψ̃(u) p̃(k))
) , (5.14)

where ψ̃(u) and p̃(k) denote the Laplace- and Fourier transform of φ(∆t)

and p(∆x), respectively. The probability density W (x, t) is then obtained

by inverse Laplace-Fourier transform

W (x, t) =
1

(2π)3i

∫ c+i∞

c−i∞

du

∫

dk eut−ikxW̃ (k, u). (5.15)

When both, the variance of the spatial steps
〈

(∆x)2
〉

= σ2 and the

expectation value 〈∆t〉 = τ of the temporal increments exist the Fourier-

and Laplace transform of p(∆x) and ψ(∆t) are given by

p̃(k) = 1 − σ2k2 + O(k4) (5.16)

ψ̃(u) = 1 − τu+ O(u2), (5.17)

for small arguments, which yield the asymptotics of the process. Inserted

into Eq. (5.14) and employing inversion (5.15) one obtains W (x, t) =

(2πDt)−1e−x
2/2Dt in this limit with D = σ2/τ . Thus, whenever

〈

(∆x)2
〉

and 〈∆t〉 are finite a CTRW is asymptotically equivalent to ordinary Brow-

nian motion.

The situation is drastically different, when both, p(∆x) and ψ(∆t) ex-

hibit algebraic tails of the form

p(∆x) ∼
1

|∆x|2+β
0 < β < 2 and φ(∆t) ∼

1

∆t1+α
0 < α < 1.(5.18)

In this case one obtains for the asymptotic of p̃(k) and ψ̃(u):

p̃(k) = 1 −Dβ |k|
β + O(k2) (5.19)

ψ̃(u) = 1 −Dαu
α + O(u). (5.20)

Inserted into (5.14) yields the solution for the process in Fourier-Laplace

space:

W̃α,β(k, u) =
u−1

1 +Dα,β|k|β/uα
, (5.21)
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where the constant Dα,β = Dβ/Dα is a generalized diffusion coefficient.

After inverse Laplace transform the solution in (x, t) coordinates reads:

W (x, t) =
1

2π

∫

dk e−ikxEα(−Dα,β|k|
βtα). (5.22)

Here, Eα is the Mittag-Leffler function defined by

Eα(z) =

∞
∑

n=0

zn

Γ(1 + αn)
(5.23)

which is a generalization of the exponential function to which it is identical

for α = 1. The integrand Eα(−Dα,β|k|
βtα) is the characteristic function

of the process. As it is a function of ktα/β , the probability density W (x, t)

can be expressed as

W (x, t) = t−2α/βLα,β

(

x/tα/β
)

(5.24)

in which the function Lα,β(z) = (2π)−1
∫

dkEα(−|k|β − ikz) is a universal

scaling function which is characteristic for the process and depends on the

two exponents α and β only. Most importantly, one can extract the spatio-

temporal scaling of the ambivalent process from (5.22):

X(t) ∼ tα/β . (5.25)

The ratio of the exponents α/β resembles the interplay between sub- and

superdiffusion. For β < 2α the ambivalent CTRW is effectively superdiffu-

sive, for β > 2α effectively subdiffusive. For β = 2α the process exhibits

the same scaling as ordinary Brownian motion, despite the crucial difference

of infinite moments and a non-Gaussian shape of the probability density

W (x, t). The function W (x, t) is a probability density for the vectorial dis-

placements x. From Eqs. (5.22) and (5.24) we can compute the probability

density Wr(r, t) for having traveled the scalar distance r = |x| by integra-

tion over all angles:

Wr(r, t) = t−α/βL̃α,β

(

r/tα/β
)

, (5.26)

with a universal scaling function L̃α,β which can be expressed in terms of

Lα,β.

The validity of our model can be tested by estimating the empirical

Wr(r, t) from the entire dataset of a little over half a million displacements

and elapse times and compare it to Eq. (5.26). The results of this analysis
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Fig. 5.7. The empirical radial probability density function Wr(r, t) and theoretical scal-
ing function L̃α,β . In order to extract scaling the function W (r, t) is shown for various
but fixed values of time t between 10 and 365 days as a function of r/t1/µ. For µ ≈ 1.0
the measured (circles) curves collapse on a single curve and the process exhibits uni-
versal scaling. The scaling curve represents the empirical limiting density F of the
process. The asymptotic behavior for small (dotted line) and large (dashed line) ar-
guments y = r/t1/µ is given by y−(1−ξ1) and y−(1+ξ2), respectively, with estimated
exponents ξ1 = 0.63 ± 0.04 and ξ2 = 0.62 ± 0.02. According to the our model these
exponents must fullfill ξ1 = ξ2 = β where β is the exponent of the asymptotic short
time dispersal kernel (Fig. 5.4), i.e. β ≈ 0.6. The superimposed solid line represents the
scaling function predicted by our theory with spatial and temporal exponents β = 0.6
and α = 0.6.

are compiled in Fig. 4.5. We can first address the question whether spatio-

temporal scaling, i.e.

r(t) ∼ t1/µ (5.27)

is observed in the data with an empirically determined exponent µ. If this

is so, then for the right choice of µ the quantity t1/µWr(r, t) depends only

on the argument r/t1/µ, that is

t1/µWr(r, t) = F
(

r/t1/µ
)

, (5.28)
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with an empirical scaling function F . We found that for an exponent µ ≈ 1

and times between one week and one year, the relation (5.28) is indeed

fullfilled and thus the dispersal of dollar bills exhibits scaling in this time

window. Because the exponent µ < 2, dispersal of bank notes is superdiffu-

sive. Yet, µ is significantly larger than the tail exponent β = 0.6 of the short

time dispersal kernel (Fig. 5.4), consistent with the idea that the process is

slowed down by long periods of rest. Comparing with the spatio-temporal

scaling promoted by the CTRW model r(t) ∼ tα/β a value of µ = 1 would

imply that temporal and spatial exponents are the same

α = β. (5.29)

Combined with the results obtained from the short time analysis yields

α = β = 0.6. (5.30)

A final test of the CTRW model is the comparison of the empirically

observed scaling function F with the predicted scaling function L̃α,β for the

values of the exponents in Eq. (5.30). As depicted in Fig. 4.5 the asymptotic

of the empirical curve is given by y−(1−ξ1) and y−(1+ξ2) for small and large

arguments y = r/t1/µ, respectively. Both exponents fulfill ξ1 ≈ ξ2 ≈ 0.6.

By series expansions one can compute the asymptotic of the CTRW scaling

function L̃α,β(y) which gives y−(1−β) and y−(1+β) for small and large argu-

ments, respectively. Consequently, as β ≈ 0.6 the theory agrees well with

the observed exponents. For the entire range of y we computed Lα,β(y)

by numeric integration for β = α = 0.6 and superimposed the theoretical

curve on the empirical one. The agreement is very good and strongly sup-

ports the CTRW model. In summary, our analysis gives solid evidence that

the dispersal of bank notes can be accounted for by a simple random walk

process with scale free jumps and scale free waiting times.

The question remains how the dispersal characteristics of bank notes

carries over to the dispersal of humans and more importantly to the spread

of human transmitted diseases. In this context one can safely assume that

the power law with exponent β = 0.6 of the short time dispersal kernel

for bank notes reflects the human dispersal kernel as only short times are

considered. However, as opposed to bank notes humans tend to return

from distant places they travelled to. This however, has no impact on the

dispersal of pathogens which, much like bank notes, are passed from person

to person and have no tendency to return. The issue of long waiting times

is more subtle. One might speculate that the observed algebraic tail in

waiting times of bank notes is a property of bank note dispersal alone.
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Long waiting times may be caused by bank notes which exit the money

tracking system for a long time, for instance in banks. However, if this were

the case the inter-report time statistics would exhibit a fat tail. Analysing

the inter-report time distribution we found an exponential decay which

suggests that bank notes are passed from person to person at a constant

rate. Furthermore, if we assume that humans exit small areas at a constant

rate which is equivalent to exponentially distributed waiting times and that

bank notes pass from person to person at a constant rate, the distribution

of bank note waiting times would also be exponential in contrast to the

observed power law. This reasoning permits no other conclusion than a

lack of scale in human waiting time statistics.

Based on our analysis we conclude that the dispersal of bank notes and

human transmitted diseases can be accounted for by a continuous time ran-

dom walk process incorporating scale free jumps as well as long waiting time

in between displacements. To our knowledge this is the first empirical evi-

dence for such an ambivalent process in nature. Furthermore, the analysis

permits a reliable estimate of the spatial and temporal exponents involved,

i.e. β ≈ α ≈ 0.6. We hope that our results will serve future models for the

spread of human infectious disease as the key ingredient of dispersal, which

can now be accounted for in a realistic way. We believe that these features,

when combined with nonlinear epidemiological reaction kinetics, will lead

to the emergence of novel types of spatiotemporal patterns.
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