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INTRODUCTION

Random utility maximization discrete choice models are widely used in transportation and other fields to represent
the choice of one among a set of mutually exclusive alternatives. The decision maker, in each case, is assumed
to choose the alternative with the highest utility to him/her.  The utility to the decision maker of each alternative
is not completely known by the modeler; thus, the modeler represents the utility by a deterministic portion which
is a function of the attributes of the alternative and the characteristics of the decision-maker and an additive
random component which represents unknown and/or unobservable components of the decision maker’s utility
function.

Early development of choice models was based on the assumption that the error terms were multivariate normal
or independently and identically Type I extreme value (gumbel) distributed (Johnson and Kotz, 1970).  The
multivariate normal assumption leads to the multinomial probit (MNP) model (Daganzo, 1979); the independent
and identical gumbel assumption leads to the multinomial logit (MNL) model (McFadden, 1973).  The probit
model allows complete flexibility in the variance-covariance structure of the error terms but it’s use requires
numerical integration of a multi-dimensional normal distribution.  The multinomial logit probabilities can be
evaluated directly but the assumption that the error terms are independently and identically distributed across
alternatives and cases (individuals, households or choice repetitions) places important limitations on the
competitive relationships among the alternatives.  Developments in the structure of discrete choice models have
been directed at either reducing the computational burden associated with the multinomial probit model
(McFadden, 1989; Hajivassiliou and McFadden, 1990; Börsch-Supan and Hajivassiliou, 1992; Keane, 1994) or
increasing the flexibility of extreme value models.

Two approaches have been taken to enhance the flexibility of the MNL model.  One approach, the development
of open form discrete choice models is discussed by Bhat in another chapter of this handbook. This chapter
describes the development of closed form models which relax the assumption of independent and identically
distributed random error terms in the multinomial logit model to provide a more realistic representation of choice
probabilities. The rest of this chapter is structured as follows. The next section reviews the properties of the
multinomial logit model as a reference point for the development and interpretation for other closed form models.
The next two sections describe models that relax the assumption of independence of error terms across
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alternatives and models that relax the assumption of equality of error terms across cases.  The final section
suggests directions for further development of these models. 
MULTINOMIAL LOGIT MODEL

The multinomial logit (MNL) model is derived through the application of utility maximization concepts to a set
of alternatives from which one, the alternative with maximum utility, is chosen.  The modeler assumes the utility
of an alternative i to an individual q, Ui,q, includes a deterministic component, Vi,q, and an additive random
component, ε i,q; that is,

, , ,i q i q i qU V ε= + (1)

The deterministic component of the utility function, which is commonly specified as linear in parameters,
includes variables which represent the attributes of the alternative, the decision context and the characteristics
of the traveler or decision maker.  The linearity of the utility function can be overcome by prior
transformation of variables, quadratic forms, spline functions (line segment approximations) or estimation
with special purpose software.

Assuming that the random component, which represents errors in the modeler’s ability to represent all of the
elements which influence the utility of an alternative to an individual, is independently and identically gumbel
distributed across cases and alternatives leads to the multinomial logit model:
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where Pi,q is the probability that alternative i is chosen by individual q,
e(  ) is the exponential function,
Vi,q is the deterministic component of the utility of alternative i for individual q, and
J is the number of alternatives

The closed form of the MNL model makes it straightforward to estimate, interpret and use.  As a result, the MNL
model has been used in a wide variety of travel and travel related choice contexts including mode, destination,
car ownership and residential location as well as choices in non-travel contexts.

However, the assumptions that the error terms are distributed independently and identically across cases and
alternatives are likely to be violated in many choice contexts. The development of alternative structural model
forms has been directed toward the relaxation of these assumptions.  Attempts to relax the equality of the
variance of the error distribution over alternatives have been based on the MNP or other models which require
numerical evaluation of multi-dimensional integrals. The relaxation of the assumptions of independence across
alternatives and equal variance across cases can be achieved through the use of closed form models as well as
through the adoption of models which require numerical integration.  Before examining these closed form
relaxations of the MNL, we review the impact of the independent and identically distributed error assumptions.

Independence of Errors Across Alternatives
The independence and equal variance of error terms across alternatives leads to the property of independence of
irrelevant alternatives (IIA) which states that the relative probability of choosing any pair of alternatives is
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independent of the presence or attributes of any other alternatives.  This is illustrated by the equality of cross-
elasticities of the probabilities of all other alternatives, i′, in response to a change in any alternative, i,
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Xη represents the cross-elasticity of the probability of alternative i’ to a change in the kth

variable describing an attribute of alternative i, Xi,k, and

kβ is the parameter associated with Xi,k .

Thus, the assumption of independent (uncorrelated) errors across alternatives results in equal proportional
substitution between alternatives.

Equality of Error Variance across Cases

The assumption of equal variance of the error components of the utility functions across cases as well as
alternatives may be inappropriate in a variety of contexts.  For example, in the case of mode or path choice in
which the travel distance varies widely across cases, the variance of the unobserved components of utility is likely
to increase with distance.  This and other similar cases can be addressed by formulating and estimating a
relationship between the error variance parameter or scale of the utility and variables, such as distance, which
describe the choice context and/or the characteristics of the decision maker.

The rest of this chapter describes approaches which have been taken to relax the assumptions of independence
among alternatives and equal variance over cases within the context of closed form models based on extreme
value error distributions.

RELAXATION OF THE INDEPENDENCE OF ERRORS ACROSS ALTERNATIVES

The nested logit model was the first closed form alternative to the MNL and has been the most widely used
alternative over the last two decades. During the same period, two general approaches were proposed to further
relax the restrictions associated with the MNL.  The generalized extreme value (GEV) family of models
(McFadden, 1978) provides a theoretical basis to relax the independence assumption and cross-elasticity
restrictions of the NL and MNL models within the utility maximization framework.  Specific GEV models have
been shown to be statistically superior to both the MNL and NL models in transportation applications.  The
universal logit model family relaxes the MNL cross-elasticity properties by including attributes of other
alternatives in the deterministic portion of the utility function of some or all of the alternatives in the choice set.
 This section discusses the properties of these groups of models.
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The Nested Logit Model

The nested logit (NL) model allows dependence or correlation between the utilities of alternatives in common
groups (Williams, 1977; Daly and Zachary, 1978; McFadden, 1978).  Derivation of the NL model is based on
the same assumptions as the MNL model except that correlation of error terms is assumed to exist among pre-
defined groups of alternatives.  Such error correlations arise if an unobserved factor influences the utility of all
members of the group. The NL model can be written as the product of a series of MNL choice models defining
each level in a tree structure.  For example, the tree depicted in Figure 1 includes three levels I, J, and K.  Each
elemental alternative is represented at the Ith level.  The number of alternatives in each nest at each nest level
varies; in particular, some nests, such as 1, 11 and 22, may have only a single member.  In this case the structural
parameter is identically equal to one and the probability of the alternative, given the nest, is one.

The values of the structural parameters, θjk and θk, indicate the substitution or cross-elasticity relationship between
alternatives in the nest.  To be consistent with utility maximization, the structural parameters at the highest level
and the ratios of the structural parameters at each lower nest are bounded by zero and one. The estimated
parameters at each node represent the ratio between the structural parameter at that node and at the next higher
node in the tree. A value of one for any ratio of structural parameters implies that the alternatives in that nest are
uncorrelated and can be directly connected to the next higher node.  If all the structural parameter ratios equal
one, all the alternatives can be directly linked to the root of the tree; that is, the structure collapses to the MNL.

Figure 1: A General Tree Notation for Three Level Nested Logit Structure

The probability associated with each elemental alternative, is given by the product of the probabilities for
each choice level between the root of the tree and that alternative; that is,
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Thus, each alternative in the nest can be connected to the next higher node in the tree eliminating the nest. As any
structural parameter decreases, the similarity between alternatives in the nest increases and the sensitivity of an
alternative to changes in other alternatives in the nest also increases; that is, '

, , ,
i

i k
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X i k i k i iP Xη β θ ′= −  whereθi,i′ is

the structural parameter for the lowest nest which includes both alternatives.

The assignment of alternatives to positions in the tree and the overall structure of the tree are subject to the
discretion of the modeler who can impose an a priori structure or search over some or all of the possible nesting
structures.  A practical problem with the NL model is the large number of possible nesting structures for even
moderate numbers of alternatives.  For example, five alternatives can result in 250 distinct structures (65 two-
level structures, 125 three level structures and 60 four level structures). On the other hand disallowing some
structures a priori, based on reasonableness criteria, can result in the loss of insight from the empirical testing.

The NL model, by allowing correlation among subsets of utility functions, alleviates the IIA problem of the MNL,
but only in part.  It retains the restrictions that alternatives in a common nest have equal cross-elasticities and
alternatives not in a common nest have cross-elasticities as for the MNL.

Generalized Extreme Value Models

The generalized extreme value (GEV) family of models (McFadden, 1978) relaxes the error independence and
substitution relationships among alternatives. The GEV family includes all closed form utility maximization
formulations based on the extreme value error distribution with equal variance across alternatives. GEV models
can be generated from any function of Yi for each alternative, i,

1 2 1 2( , ,......., ),  , ,......., 0J JG Y Y Y Y Y Y ≥ (5)

which is non-negative, homogeneous , goes to infinity with each Yi and has odd (even) order partial derivatives
which are non-negative (non-positive).  The probability equation of such a model, for µ equal to one and the
transformation, Yi = exp(Vi),  to ensure positive Yi is
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where Gi( ) is the first derivative of G with respect to Yi, and
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Vi represents the observable component of the utility for each alternative.

Both the multinomial logit and nested logit models belong to the GEV family. GEV models can be grouped into
two classes.  One class, models that are flexible with respect to cross-elasticities between alternatives, includes
the paired combinatorial logit (PCL) model (Chu, 1989, Koppelman and Wen, 1998), the cross-nested logit
(CNL) model (Vovsha, 1997), and the generalized nested logit (GNL) model (Wen and Koppelman, 2000), the
generalized MNL (GenMNL) model (Swait, 2000), and the fuzzy nested logit (FNL) model (Vovsha, 1999). Each
of these models allows differential correlation or rates of substitution between pairs of alternatives.  The second
class includes models, which impose a specific structural relationships on cross-elasticities between alternatives,
a priori.  Models in this class are the ordered generalized extreme value model (Small, 1987), which allows
differential correlation among alternatives based on their proximity in an ordered set; the principles of
differentiation (PD) model (Bresnahan et. al., 1997); and the cross-correlated logit (CCL) model (Williams,
1977), which allow differences in correlation between alternatives along distinct dimensions of choice.

The models in the first class are differentiated by the way in which they incorporate pairwise
correlation/substitution into the model.  The PCL model assigns equal portions of each alternative to one nest
with each other alternative. The total probability of choosing an alternative is the sum over pairs of alternatives
of the unobserved probability of the pair times the probability of the alternative given choice of that pair.
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where Pi/ij is the conditional probability of choosing alternative i given the choice of pair ij,
Pij is the marginal probability for the alternative pair ij,
Vi is the observable portion of the utility for alternative i,
J is the number of alternatives in the choice set and
α is the fraction of i assigned to nest ij and is equal to 1/(J-1) for all alternatives and

nests.

The summation includes all pairs of alternatives in the choice set of J alternatives, and θij is the structural
parameter associated with alternative pair ij.  This formulation allows different cross-elasticities to be
estimated for each pair of alternatives.  However, the equal allocation of each alternative to a nest with each
other alternative limits its maximum implied correlation with each other alternative to 1/(J-1) which similarly
limits the maximum cross-elasticity for the pair. This limitation may be serious in cases with more than a few
alternatives.

The CNL model allows different proportions of each alternative to be assigned to nests selected by the
modeler with each nest having the same structural parameter, the probability of each alternative being:
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where Vi is the observable portion of the utility for alternative i,
Nm is the set of all alternatives included in nest m,
θ is the similarity parameter for all nests, 0 < θ ≤1,
αim is the portion of alternative i assigned to nest m and must satisfy the conditions that

1,  im
m

iα = ∀∑  and 0 ,im i mα > ∀ .

The implied correlation and substitution between alternatives is determined by the fractions of each
alternative included in one or more common nests.  The selection of the number of nests and the assignment
of alternatives to each nest are left to the judgement of the modeler.  The constraint of equal logsum
parameters for all nests limits the maximum cross-elasticity associated with each pair of alternatives.

The GNL model, which combines the flexibility of the PCL model (different structural parameters for each
nest) with that of the CNL model (different proportions of each alternative assigned to each nest), enables
very flexible correlation/substitution patterns.  The choice probabilities for the GNL model are given by:
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Swait (2000) proposed the Generalized MNL model, to simultaneously evaluate choice and choice set
generation.  The GenMNL model is identical to the GNL except that the allocation parameters are
constrained to be equal.  Vovsha (1999) reports development and application of the Fuzzy Nested Logit
model, which is identical to the GNL, except that it allows multiple levels of nesting. While this model is
technically different from the GNL model, we believe that the GNL can closely approximate the FNL model.

The PCL and CNL are special cases of the GNL model with allocation parameters constrained to be equal
( , , )jm j mα α= ∀  for the PCL model and the structural parameters constrained to be equal ( , )m mθ θ= ∀
for the CNL model.

The differences among these models and the MNL and NL models are illustrated by differences in their cross-
elasticities (Table 1).  In each case, the cross elasticity is a function of the probability of the alternative which
is changed, the value of the variable which is changed and the parameter associated with that variable. The
differences among models are represented by additions to the probability term.  These additions are functions
of the structural parameter(s) for nests that include the changed alternative and the alternative for which the
elasticity is formulated and, for the CNL and GNL models, increases with the allocation parameters,
embedded in the conditional probabilities, for these alternatives.
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The CNL, GNL, GenMNL and FNL models all require the analyst to choose among a large set of possible
nesting structures which, at the limit, includes single alternative nests, and nests with all possible combinations
of alternatives.  Swait (2000) explains these alternative nests in terms of the choice sets which might feasibly
be generated and compares models with different nesting structures.  The search requirement, which is similar
to the NL search problem, places responsibility on the analyst to explore and select among many structural
alternatives.  The PCL model, that strictly limits the assignment of alternatives to nests, does not share this
problem.  One approach to the search problem is to implement a paired GNL model and to use the results to
identify groups of alternatives that might be included in a common nest.

The models in the second class assume specific structural relationships among alternatives.  The ordered
generalized extreme value (OGEV) model (Small, 1987) allows correlation and, thus, the substitution
between alternatives in an ordered choice set to increase with their proximity in that order.  Each alternative
is a member of nests with one or more adjacent alternatives.  The general OGEV model allows different levels
of substitution by changing the number of adjacent alternatives in each nest, the allocation weights of each
alternative to each nest and the structural parameters for each nest.  The choice probabilities for the general
OGEV model is given by
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where Vi is the observable portion of the utility for alternative i
L is a positive integer that defines the maximum number of contiguous alternatives that

can be included in a nest,
J is the total number of alternatives,
Nm is the set of all alternatives included in nest m,
θm is the similarity parameter that satisfies the condition, 0 < θm ≤ 1, and

mα is an allocation parameter satisfying the condition that 
0

1
M

m
m

α
=

=∑
Vi

eθ is equal to zero for i < 1 and i > J.

The principles of differentiation (PD) model (Bresnahan et. al., 1997) is based on the notion that markets for
differentiated products (alternatives) exhibit some form of clustering (nesting) relative to dimensions which
characterize some attribute of the product.  Under this structure, alternatives that belong to the same cluster
compete more closely with each other than with alternatives belonging to other clusters. The PD model
defines such clusters along multiple dimensions. The choice probability equations for a PD model with D
dimensions of differentiation and jd levels along each dimension, is given by:
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where iV is the systematic component of the utility for alternative i,
θd is the structural parameter that measures the degree of similarity among products in the same

category along dimension d, and

dα is the weight for dimension d which can be defined as a function of the structural parameters,
θd , or estimated separately.

The PD structure avoids the need for ordering nests in multi-dimensional choice contexts as is required by use
of multi-level NL models and allows cross-elasticities along each dimension; thus, making no a priori
assumption about the relative importance or similarity of each dimension. The PD structure can be applied to
the variety of multi-dimensional choice contexts that occur in transportation modeling such as the joint choice
of mode and destination or the three-dimensional choice of residential location, auto ownership and mode to
work.

The OGEV and PD models can be shown to be special cases of the GNL model (Wen and Koppelman,
2000).

The cross-correlated logit (CCL) model (Williams, 1977, Williams and Ortuzar, 1982), formulated to account
for differences in substitution along two distinct dimensions, is similar in spirit to the PD model.  However,
the authors of this model adopted a numerical solution technique rather than develop a closed form solution.

The proliferation of GEV models places increased responsibility on the analyst who must select the most
appropriate model among the models available.  Models that allow increasingly flexible structural
relationships among alternatives add to the estimation complexity, computational demands and the time
required searching for and selecting a preferred model structure.  This task is interrelated with the task of
searching for and selecting a preferred utility function specification. In some cases, a relatively simple
structure will be adequate to represent the underlying behavior; in others, a relatively complex model
structure will be required. The required level of complexity in each case is unlikely to be known a priori.
However, methods and rules can be developed to guide the search among alternative structures. Nonetheless,
analyst judgement and structural exploration is likely to be needed to ensure an appropriate tradeoff between
model complexity and ease of estimation, interpretation and use.
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Universal (Mother) Logit Models

Another approach to generalization of the MNL model is to include attributes of competing alternatives in the
utility function for each alternative (McFadden, 1975).  The flexibility of this generalization can be used “to
approximate all qualitative choice models with continuous probabilities” giving rise to its description as the
“universal” or “mother” logit.  Despite its apparent flexibility and use of MNL estimation programs, there are
few examples of mother logit models in the literature.  This may be due to lack of consistency with utility
maximization in some cases, the potential to obtain counter-intuitive elasticities, and the complexity of search
for a preferred specification (Ben-Akiva, 1974).  Examples of universal logit models, developed and applied
to transportation problems, are the Dogit model, the Parameterized Logit Captivity model and the C-Logit
model, described in the balance of this section.

The Dogit model (Gaudry and Dagenais, 1978) takes account of cases in which some of the decision-makers
are captive or loyal to a particular alternative, to the extent that they choose that alternative independent of its
attributes or the attributes of the other alternatives.  The Dogit model form is:
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where Pi is the probability of choosing the ith alternative,
Vi is the observable portion of the utility for alternative i,
πi is a non-negative captivity parameter associated with alternative i, and
J is the number of alternatives

The Dogit model reduces to the MNL when all πi equal zero.  Higher values of πi imply greater probability
that an individual is captive or loyal to alternative i.  Relaxation of the IIA constraint of the MNL can be seen
in terms of the cross-elasticities of alternatives, represented by
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which, unlike the MNL, are different across alternatives.  In particular, the elasticity of any alternative
decreases with increasing captivity/loyalty of that alternative. 

Swait and Ben-Akiva (1987) generalized the Dogit model, which incorporates probabilistic choice set
generation, denominated as the Parameterized Logit Captivity (PLC) model.  Specifically, in this formulation,
the captivity parameter for each alternative i is parameterized as a function of independent variables, but
restricted to be non-negative.  That is

,( ' )i i qF Xπ γ= (14)

where Xi,q is a vector of socio-economic characteristics of decision-maker and attributes of
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alternative i, case q,
'γ is a vector of parameters to be estimated, and

F is a transformation function

The C-Logit model, proposed by Cascetta (1996) in the context of route choice modeling in which
alternatives share common elements (links), takes account of such overlapping sections by subtracting a
commonality measure from the utility of each alternative to represent the extent of overlap with other
alternatives as
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where CFi is the commonality factor of path i with other paths in the choice set

This subtraction results in reduced probability shares for alternatives that share common links; however, the
substitution between alternatives is identical for all alternatives, as shown by the cross-elasticity expression;
that is the model retains the IIA property of the MNL.
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Overview of Models which relax the Independence of Errors over Alternatives

The independent and identically distributed error distribution assumption of the MNL model has been widely
recognized as producing choice relationships that are likely to be inconsistent with behavioral decision
processes; considerable work has been undertaken to develop alternative model forms which relax these
constraints.  These developments have been based on the generalized extreme value and mother logit models,
both of which were proposed by McFadden (1978, 1975).  The evolution of these models has been toward
increasing relaxation of the independence constraint, which, in turn, relaxes the cross-elasticity property of
the MNL. The generalized nested logit model, the most flexible of the models proposed to date, includes the
other GEV models as special cases. The advantage of increased flexibility of structure brings with it the need
to estimate a larger set of parameters, which may lead to problems of estimation and identification, and
imposes an additional search problem for the modeler in his/her consideration of alternative model structures.
Thus, there is an important place in the modeler’s toolbox for models with restricted structures based on an
understanding of the relationships in each choice context.

RELAXATION OF THE EQUALITY OF ERRORS OVER CASES

The models described above assume the equality of error variance-covariance structure across cases; that is,
the distribution of information, which is excluded from the utility assessment, is approximately equal across
cases.  The assumption of variance and/or covariance equality across cases may be inappropriate in a variety
of choice situations.  Examples include route and mode choice where the error variance is likely to increase
with distance, stated preference responses in error variances may increase (decrease) due to respondent
fatigue (learning) and differences in choice task complexity that may arise due to the number and/or similarity
of the choice alternatives.  Similarly, the assumption of covariance homogeneity (or equivalently, equal
correlation) may be violated in choice where the degree of substitution between travel modes may vary by trip
related attributes (e.g., trip distance) and/or characteristics of the traveler. For example, rail and automobile
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may be more substitutable with each other than with air for shorter intercity trips, relative to longer distance
trips where air is more likely to be substitutable with rail.

Swait and Adamowicz’s (1996) Heteroscedastic Multinomial Logit (HMNL) model allows the random error
variances to be non-identical across individuals/cases.  The model is motivated by the hypothesis that
individuals with the same systematic utility for an alternative may have different abilities to discriminate
between the utilities of different alternatives.  These differences can be represented in the model as a
parameterization of the variance of the random error terms of the utility function.  One approach, based on
the complexity of a choice situation (Eq) is defined as a function of individual characteristics (e.g., income)
and the choice context variables (e.g., number of alternatives, similarity of alternatives, etc.).  Since the
complexity measure is constant across alternatives, the scale factors vary only by case and not by alternative. 
The choice probabilities for the HMNL model are given as

,

',

( )  

,
( ) 

' 1

 q i q

q i q

E V

i q J
E V

i

eP
e

µ

µ

=

=
∑

(17)

where Vi,q is the systematic component of the utility for alternative i case q and
µ(Eq) is the scale parameter for case t as a function of the complexity measure (Eq ) for a

given choice situation,

This formulation ensures consistency with random utility maximization as shown explicitly by Swait and
Adamowicz (1996) and recognized by Ben-Akiva and Lerman (1985, pp. 204-207). The HMNL model
retains the same basic properties as the MNL, most notably IIA and uniform cross-elasticities.  However, the
parameterization of the scale causes the cross-elasticities to differ for each case as follows:

'

, ,( ) ( )i

i k

P
X q i k i kE P Xη µ β= − × (18)

The Covariance Heterogeneous Nested Logit (COVNL) model (Bhat, 1997), formulated as an extension of
the NL model allows heterogeneity across cases in the covariance of nested alternatives.  The COVNL model
accommodates covariance (or equivalently, correlation) heterogeneity across cases by parameterizing the
structural parameter(s) as function(s) of individual and choice context characteristics as follows:

, ( ' )m q qF Xθ α γ= + (19)

where θm,q is the structural parameter for nest m case q,
Xq is a vector of individual and trip related characteristics for case q,
α, 'γ are parameters to be estimated, and
F is a transformation function

Since utility maximization requires that θm,q lie between zero and one, F can be any continuous function that
maps from a real line to the 0-1 interval.  If 'γ = 0 in equation (19), covariance heterogeneity is absent and
the COVNL reduces to the NL model.  The parameterization of the structural parameter provides additional
behavioral appeal to the NL model.  The COVNL model retains a simple form and provides closed form
expressions for choice probabilities.  In its only empirical application to date, the COVNL model was
statistically superior to the NL and MNL models, suggesting the potential value of accommodating
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covariance heterogeneity across cases in models that allow for correlation among alternatives.

FUTURE DEVELOPMENTS IN CLOSED FORM CHOICE MODELS

Considerable progress has been made in relaxing the independence across alternatives and the homogeneity of
error variance across cases within the context of closed form extensions of the multinomial logit model.  This
progress has dramatically increased the potential to represent complex choice situations using closed form
models.  Additional developments are likely along three related dimensions.

First, an important aspect of some of these models; specifically, the nested logit, cross-nested logit and
generalized nested logit models; is the flexibility of their nesting structure.  This flexibility provides more
realism in the representation of substitution relationships among alternatives but can result in an extended
search and evaluation process.  The development of techniques to search intelligently among large numbers of
alternatives and provide useful guidance to the analyst would increase the usability of these models in choice
contexts with more than a few alternatives.

Second, it is possible to over-parameterize the structural elements of the more complex models causing
identification problems.  This problem can be addressed, to some extent, by the use of constrained maximum
likelihood but may under some circumstances result in non-unique solutions or interpretation difficulties. 
Additional analysis is required to evaluate the impact of these issues on the usefulness of these models.

Finally, there is opportunity to combine isolated extensions of these closed form models in an integrated
framework to yield behaviorally richer, yet computationally tractable models.

Table 1: Cross-Elasticities of Selected GEV models: The Elasticity of Alternative j in response to a
Change in Attribute k of Alternative i, Xik

Model Cross-Elasticity

Multinomial Logit
(MNL)

ki ikP Xβ

Nested Logit
(NL)

ki ikP Xβ−

/ k
1

 m
i i m ik

m

P P X
θ β

θ
  −− +  

  

Paired Combinatorial Logit
(PCL)

( ) ( ) ( )
k

1 ij
i ik

ij j

P ij P i ij P j ij
P X

P
θ

β
θ

    −   − +       
Cross Nested Logit

(CNL) ( ) ( ) ( )
k

1
i ik

m j

P m P i m P j m
P X

P
θ β

θ
    −   − +  

   
∑

Generalized Nested Logit

(GNL)

( ) ( ) ( )( )
k

1 m
i ik

m m j

P m P i m P j m
P X

P
θ β

θ

    −    − +  
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