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Abstract This paper studies the dynamic user optimal (DUO) traffic assignment
problem considering simultaneous route and departure time choice. The DUO
problem is formulated as a discrete variational inequality (DVI), with an embeded
LWR-consistent mesoscopic dynamic network loading (DNL) model to encapsulate
traffic dynamics. The presented DNL model is capable of capturing realistic traffic
phenomena such as queue spillback. Various VI solution algorithms, particularly
those based on feasible directions and a line search, are applied to solve the
formulated DUO problem. Two examples are constructed to check equilibrium
solutions obtained from numerical algorithms, to compare the performance of the
algorithms, and to study the impacts of traffic interacts across multiple links on
equilibrium solutions.

Keywords Dynamic user optimal traffic assignment . Dynamic network loading .

Variational inequality . Feasible direction algorithms

1 Introduction

Predicting the temporal and spatial traffic evolution over road networks has attracted
numerous research efforts since the 1970s, when transportation researchers began to
recognize the limitations of static network equilibrium models (Wardrop 1952,
Beckmann et al. 1956) in describing a system that essentially varies over time. These
limitations include, among others, the inability of modeling departure time decisions
and the formation and dissipation of queues when travel demands temporarily
exceed road capacities at different locations, two important elements to consider in
traffic congestion management.
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The earliest work to bring the time dimension into equilibrium analysis is perhaps
Vickrey’s seminal paper on the morning commute problem (Vickrey 1969), in which
traffic congestion takes the form of queuing behind a bottleneck caused by temporal
demand surge. Vickrey’s bottleneck model stimulated numerous studies on the
morning commute problem. Most of these studies focused on finding analytical
equilibrium solutions and/or exploring economic and policy insights (e.g.,
Mahmassani and Herman 1984, Newell 1987, Arnott et al. 1990, Kuwahara 1990,
Yang and Huang 1997). However, these models do not intend to solve, thereby are
not typically applicable to the general dynamic user optimal (DUO) assignment
problem, where multiple origin–destination (O–D) pairs, route/departure time choices
and realistic representation of traffic dynamics are considered simultaneously.

It was not until the early 1990s that variational inequality (VI) is employed to provide
a general DUO formulation, in the context of dynamic traffic assignment (DTA). Friesz
et al. (1993) and Smith (1993) are the first to establish the equivalence between the
dynamic user optimal condition and the solution to a corresponding variational inequality
VI(c, Ω), where c represents a mapping from path flow to path cost and Ω depicts a
feasible set of path flows. Nevertheless, the original VI formulation of Friesz et al.
(1993) is notoriously hard to solve. Above all, the analytical properties of the nested
path cost function c, such as differentiability and monotonicity, are difficult to assert
(Friesz et al. 2001). This drawback hinders the design of effective solution procedures.
Numerous formulations had since been proposed in the hope of casting the flow-cost
mapping in a more tractable way. Most existing work are either based on VI (e.g., Wei
et al. 1995, Ran et al. 1996, Chen and Hsueh 1998, Lo and Szeto 2002, Szeto and Lo
2004), or highly related to it (e.g., Huang and Lam 2002, Wei et al. 2002). In this body
of work, various network traffic flow models were used, which include the delay
function model (e.g., Friesz et al. 1993, Ran et al. 1996), the point-queue model (e.g.,
Smith 1993, Huang and Lam 2002), and the kinematic wave model (e.g., Lo and Szeto
2002, Szeto and Lo 2004). In spite of these efforts, however, the evaluation of c still
relies frequently on a numerical procedure known as dynamic network loading (DNL).
The complexity of DNL varies substantially according to the underlying representation
of traffic flow, which conceivably has a dominant impact on the DUE solutions.
Compared to DNL, designing solution procedures for dynamic traffic assignment is
less well studied: heuristic algorithms were suggested in most cases, such as the
method of successive averages (Tong and Wong 2000). Lo and Szeto (2002) solved the
DUO problem using an alternating direction algorithm. By introducing Lagrangian
multipliers, they simplified the projection used to generate the feasible direction.
Recently, Friesz and Mookherjee (2006) proposed a projection algorithm which
converges to a DUO solution when the nested path cost function is monotonic.1

In this paper, the DUO problem is formulated as a discrete VI while traffic
dynamics is encapsulated in a mesoscopic DNL model. The formulation considers
individuals’ route and departure time choices simultaneously. Our DNL model
describes traffic evolution on links through macroscopic traffic models based on the
kinematic wave theory, and considers link interactions by incorporating proper node
models. It is thus capable of capturing realistic traffic phenomena such as the
propagation of shockwaves and queue spillback.

1 It is noted (Friesz and Mookherjee 2006), however, that this condition is unlikely to be met in general.
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We examine a class of numerical solution procedures for the DUO problem and
use various line search techniques to improve convergence performance. Most of
these techniques are based on transforming a VI to a maximization program
associated with a bi-variate merit function. The use of line search seems
prohibitively expensive at first glance since evaluating the merit function would at
least require performing DNL once. Existing feasible direction algorithms often
apply predetermined step sizes (e.g., Szeto and Lo 2004). However, our experiments
indicate that the computational overhead invested in finding a better step size could
be paid off by the gains of faster convergence.

It is known that a traffic flow model ignoring the physical space taken up by
queues may undermine the prediction accuracy of DTA models. This paper further
shows that just considering the physical length of queues is still not enough:
equilibrium solutions may vary considerably if the propagation speed of queues
(shockwave speed) is computed differently, as is made clear in Section 5. This
finding again attests to the importance of a realistic representation of traffic
dynamics in modeling network flows.

2 A VI formulation of the DUO problem

Consider a general transportation network G(N, A), where N and A are sets of nodes
and links, respectively. Let R and S represent the set of origins and destinations, K rs

the set of paths joining an O–D pair rs. Let [0, T] be an assignment period. The
network is assumed to be empty at t=0, and only vehicles departing within the
assignment period are of interest to the DUO problem. Corresponding to each
assignment period, we define a loading period [0, T’], where T’ marks the time when
all traffic clears the network. Let qrs(t) be the travel demand between O–D pair rs
departing at time t, and

qrs ¼
ZT
0

qrs tð Þ

Without loss of generality, we assume that all commuters prefer a punctual arrival
within an identical time window, t*a � δ; t*a þ δ

h i
. A schedule cost is imposed if they fail

to do so. Each individual would choose a combination of a departure time t and a
route prs such that the actual experienced commute cost, crsp tð Þ, is minimized. We
define crsp tð Þ by the following piecewise linear function (Arnott et al. 1990):

crsp tð Þ ¼
α5rs

p tð Þ þ β t*a � D� t � 5rs
p tð Þ

h i
; t þ 5rs

p tð Þ < t*a � D early arrival

5rs
p tð Þ; t þ 5rs

p tð Þ 2 t*a � D; t*a þ D
h i

punctual arrival

α5rs
p tð Þ þ + t þ 5rs

p tð Þ � t*a � D
h i

; t þ 5rs
p tð Þ > t*a þ D late arrival

8>>><>>>:
ð1Þ

where wrs
p tð Þ is the actual travel time for travelers using path prs and departing at

time t. α, β and + are scalars satisfying +> α>β>0.
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A dynamic user optimal condition is attained if and only if for each O–D pair, the
actual commute costs experienced by travelers are equal and minimal no matter
when they depart and which route they take. Mathematically, the optimal condition
is expressed as:

f rsp tð Þ crsp tð Þ � πrs
h i

¼ 0; 8r; s; p; t
crsp tð Þ � πrs; 8r; s; p; t

(
ð2Þ

where πrs is the DUE path travel cost for users who belong to O–D pair rs, f rsp tð Þ
denotes the number of vehicles using path prs and departing at time t. We have the
following flow conservation condition

X
prs2Krs

ZT
0

f rsp tð Þdt ¼ qrs; 8r; s ð3Þ

and the nonnegativity condition:

f rsp tð Þ � 0; 8r; s; p; t ð4Þ
Because one often needs to solve DUE problem numerically, a discrete form is

presented below where an assignment period is divided into m intervals with an
identical length δ. The DUO problem (2)–(4) is then reformulated as a discrete
variational inequality, DVI(c, Ω), as follows:

Find ef rsp tð Þ 2 Ω such that
X
r

X
s

X
p

X
t

ecrsp tð Þ f rsp tð Þ � ef rsp tð Þ � 0; 8f rsp tð Þ 2 Ω;
�

ð5Þ

Ω ¼ f rsp tð Þ 2 Rþ X
prs2Krs

Xm
t¼1

f rsp tð Þ ¼ qrs; f rsp tð Þ � 0; 8r; s; t
�����

( )
ð6Þ

In matrix notation, DVI(c, Ω) can be simplified as

Find ef 2 Ω such that c ef� �; f �efD E
� 0; 8f 2 Ω ð7Þ

Ω ¼ f 2 Rnþj;Mf ¼ q; f � 0f g ð8Þ
where a; bh i ¼ aTb and n ¼ m�P

r

P
s

Krsj j.
It has been proven (Wei et al. 1995) that an f solves DVI(c, Ω) if and only if it

satisfies the optimal conditions (2)–(4). A well-known existence result about DVI(c,
Ω) is given below:

Theorem 1 A solution exists for DVI(c, Ω) if Ω ∈ Rn is closed, convex and c: Ω→Rn

is continuous on Ω.

Proof Via either Brouwer’s fixed point theorem or degree theory. See Section 2.2 in
Facchinei and Pang (2003). h
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Given that Ω is a polyhedral (hence a closed convex set), the question about the
existence of a solution relies on the continuity of c with respect to f, and that was
independently established in Wei et al. (1995) and Huang and Lam (2002) for the
exit-flow function model and for the point-queue model, respectively. However, the
continuity of c remains an open question for more realistic but also more
complicated network traffic flow models such as those considering link interactions
and queue spillover. The discontinuity of c in the presence of queue spillover may
contribute to the instability of equilibrium solutions, as noted in Daganzo (1998).
While this problem is more pronounced for DUO problems with no departure time
choice, our intuition tells us that departure time choice would regularize the problem
and the continuity of c can be expected in most cases, we therefore assume in this
paper that the continuity of c holds and leave the study of existence and uniqueness
of solutions to further research.

3 Dynamic network loading

A mesoscopic dynamic network loading (DNL) model is used in this study to
evaluate the commute cost crsp tð Þ, given an inflow pattern f rsp tð Þ; 8p; r; s; t. Path travel
times wrs

p tð Þ (hence crsp tð Þ) are computed by making use of link cumulative curves.
As DNL proceeds, the cumulative arrival/departure curves on each link are built by
counting the number of vehicles arriving and departing the link during each discrete
loading interval δ. Time-dependent link traversal times are then retrieved from the
cumulative curves provided the first-in-first-out (FIFO) condition is ensured
throughout the loading process. In turn, travel times of individuals who depart at
any assignment interval and travel along any given path can be calculated by
recursively applying link travel times. Specifically, the traversal time of any vehicle
entering a link a at time t0 can be determined by

w t0ð Þ ¼ D�1
a Aa t0ð Þð Þ � t0 ð9Þ

where Da(t) and Aa(t) are departure and arrival curves of link a. Thus, the path travel
time wrs

p tð Þ can be recursively calculated as follows:

wrs
p tð Þ ¼ D�1

as
Aas D�1

as�1
Aas�1 . . . D�1

a0
Aa0ð Þ

� �� �� ��
� t ð10Þ

where path prs contains a link sequence {a0, a1,..., as}. We emphasize that FIFO is a
prerequisite to calculate path travel times using Eq. (10). Finally, path travel times
are defined for each departure (loading) interval and measured in the unit of loading
intervals. Note that a loading interval is usually much smaller than the assignment
interval based on which the travel demand table is discretized.

The loading process is decomposed into two separate stages: propagate flows on
links and transmit them through nodes. Three different models for link traffic
dynamics are considered in this study: the point–queue (P–Q) model, the spatial
queue (S–Q) model, and the kinematic wave model, known as the LWR model
(Lighthill and Whitham 1955, Richards 1956). In the P–Q model, vehicles always
move along a link at free-flow speed until they arrive at the exit point, where they
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form a vertical queue if the outflow rate they induce exceeds the maximum discharge
rate (capacity flow) of the link. Since the P–Q model ignores the physical length of
vehicles, it never predicts a queue spillback. A simple remedy is to block inflow
whenever a link’s storage capacity is reached,2 which gives the name to the S–Q
model. Although the S–Q model captures the growth of queues across links, it
implicitly supposes that any queue is at jam density (Zhang and Nie 2005), an
assumption that is obviously in discord with most existing observations. The
propagation speed of a queue is better predicted in the LWR model by explicitly
tracing shockwaves. However, the LWR model in general requires more complex
numerical solution schemes (e.g., the cell transmission model of Daganzo (1994)
than the P–Q and S–Q models. Readers are referred to Zhang and Nie (2005) for
more details on the similarities and differences among the three models.

To present a general model that governs traffic flow through nodes, we first define
the demand (or supply) of a link at time t, d(t) (or s(t)), as the maximum number of
vehicles that are allowed to leave (enter) the link at t. Consider a general road
intersection with n incoming and m outgoing links. At time t, each incoming link Ii
and outgoing link Oi are associated with a demand di(t) and a supply si(t),
respectively. Further, we assume that the proportion of vehicles on link Ii heading for
each outgoing link Oj is known, denoted as aij. The flow between any pair of
incoming link i and outgoing link j, fij(t), can be computed as follows.

Step 1: Compute virtual demands for each incoming link i;

vdi tð Þ ¼ min di tð Þ;max
sj tð Þ
aij tð Þ ; 8j
� �� �

ð11Þ

Step 2: Compute virtual supply for each outgoing link i;

vsi tð Þ ¼ min si tð Þ;
Xm
j¼1

aij tð Þdj tð Þ
 !

ð12Þ

Step 3: Compute fij(t) as follows:

fij tð Þ ¼ min vdi tð Þaij tð Þ; vsj tð Þ vdi tð Þaij tð ÞPn
k¼1

vdkakj tð Þ

0BB@
1CCA ð13Þ

Readers can verify that the merge and diverge models used in Daganzo (1995)
and Jin and Zhang (2003) are special cases of this general model. A formal proof can
be found in Chapter 5, Nie (2006). Note that the calculation of supply depends on
link traffic dynamics. In our DNL model, the supply of a P–Q link always equals to
infinity, while that of a S–Q link is the minimum of capacity flow and available
holding space. The determination of supply in a LWR link is a bit more complex and
not presented here to save space (See Daganzo 1995 for details).

2 That is, the maximum number of vehicles a link can store under a given average vehicle length.
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Link and node models are bound together by introducing two “buffers” into links.
A link is thus divided into three parts: a core section which implements flow
dynamics, an incoming and an outgoing flow buffer which handle the flow exchange
between the link and the node. An incoming flow buffer is an imaginary facility in
the sense that vehicles do not really spend time in it. It just temporarily stores
incoming vehicles at the current loading interval. Conversely an outgoing flow
buffer simulates road ends where vehicles heading for different directions are
classified and queued in divided lanes. During each loading interval, nodes first
transmit flows from outgoing buffers of upstream links into the downstream
incoming buffers, using Eqs. (11)–(13). Then link models set forth to receive flows
from their incoming buffers and send flows into their outgoing buffers. Obviously,
the framework imposes no restriction on how nodes should compute the outgoing
and incoming flows, or how links should transfer flows from its head to end. Hence
any node/link model that defines the above operations can be adopted.

A notable feature of our DNL is the capability of tracking individual vehicular
quanta. Each vehicular quantum is an indivisible flow element independently
treated in the loading process like a vehicle in microscopic simulation. Among
other advantages, tracing a vehicular quantum greatly reduces the complexity of
ensuring FIFO. Obviously a queue structure is sufficient to preserve the order of
vehicular quanta on links. Although the use of vehicular quanta makes it
impossible to continuously represent traffic flow (note that any flow can only be
measured in the unit of vehicular quantum), the introduced errors can always be
controlled by reducing the size of the quantum.

Now we are ready to summarize the dynamic network loading procedure as follows:

Step 0: Initialize. Generate an empty network and let t=0.
Step 1: If t≤T, for each r∈ R, s ∈S, create vehicular quanta from qrs(t) and insert

them into the incoming flow buffers of the outgoing link of r.
Step 2: For each node i∈ N, delete quanta from outgoing buffers of upstream links

and insert them into the incoming buffers of downstream links, based on
Eqs. (11)–(13).

Step 3: For each link a ∈A, if a is connected with a destination, delete vehicular
quanta from its incoming buffer; otherwise, move quanta from its incoming
buffer to its outgoing buffer according to the specified traffic flow dynamics.

Step 4: If network is empty and t>T, stop; otherwise t = t + δt, go to Step 1.

4 Solution algorithms

We first present a few important analytical results based on which most of the
studied algorithms are developed.

4.1 Merit-function transformation and other results

It is well known that DVI(c, Ω) cannot be transformed into a conventional
mathematical program because the Jacobian of c is unlikely to be symmetric (note
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that commuters’ travel costs are only affected by those departing earlier than them,
but not vice-versa). An alternative approach is to introduce merit (or gap) functions:

Generic merit function GMFð Þθ fð Þ :¼ min
g2Ω

c fð Þ; g� fh i ð14Þ

Regularized merit function RMFð Þθτ fð Þ :¼ min
g2Ω

c fð Þ; g� fh i þ 1

2τ
g� f ; g� fh i

ð15Þ
We have the following equivalence results.

Proposition 1 f* is a solution to DVI(c, Ω) if and only if f* solves the maximization
program max

f 2Ω
q fð Þ and θ(f*)=0 is attained at the optimum.

Proof If f* is a solution to DVI(c, Ω), then c f*
� �

; g� f*
D E

� 0, so θ f*
� �

� 0. On the

other hand, by definition, θ f*
� �

� c f*
� �

; f* � f*
D E

¼ 0. Consequently, θ(f*) has to be
zero and obviously this is the maximum possible value of θ(f*). Thus, f* maximizes θ
on Ω.

Conversely, if f* maximize θ on Ω, according to the definition we know that θ f*
� �

� 0.
And this “zero” is attained when taking minimum for c f*

� �
; g� f*

D E
;8g 2 Ω, That is to say,

c f*
� �

; g� f*
D E

� �; 8g 2 Ωf* is a solution to DVI(c, Ω). h

Note that θ(f) is not differentiable in general, while qt fð Þ is differentiable
provided that c is continuously differentiable on Ω. However, the continuity of c in
our DUO problem remains an unresolved issue, let alone its differentiability.
Therefore, efficient algorithms would have to depend on “derivative-free”
approaches. The following theorem lays a foundation for such algorithms

Theorem 2 For every f∈Ω, the following three statements are valid.

1. The optimal solution to the minimum program that defines qt 2fð Þ,egt fð Þ, is the
projection of f-Cc(f ) onto Ω, i.e.,

egτ fð Þ ¼ ΠΩ f � τc fð Þð Þ ð16Þ

2. If c(f ) is Lipschitz continuous and strongly monotone on Ω, then egC fð Þ � f is a
strict ascent direction for qt fð Þ at f, whenever f is not a solution to DVI(c, Ω).

3. If c(f ) is Lipschitz continuous and monotone on K, either egt fð Þ � f is a strict
ascent direction for qt fð Þ at f, or qt fð Þ ¼ 1

2t g� f ; g� fh i.

Proof The first statement follows from Theorem 10.2.3 in Facchinei and Pang
(2003) , while the second and third statements follow from Propositions 1 and 2 in
Zhu and Marcotte (1993), respectively. h

The projection 9Ω f � τc fð Þð Þ provides not only a feasible ascent direction, but
also a means to verify optimality, as shown in Theorem 3.
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Theorem 3 f solves DVI(c, Ω) if and only if f ¼ 9Ω f � τc fð Þð Þ.

Proof Follows from Nagurney (1993).
This result plays a fundamental role in designing projection-type VI algorithms,

of which some will be explored in Section 4.2.
We now return to the generic merit function θ(f) to explore some of its interesting

properties that would lead to another feasible direction algorithm.

Proposition 2 eg fð Þ solves the minimum program that defines θ(f) Eq. (14) for a
given f if and only if eg fð Þ is an all-or-nothing assignment on time-dependent
minimum-cost paths for each O–D pair.

The proof of this is obvious and not presented here to save space. Existing
heuristics (e.g., the method of successive averages) for the DUO problem often
assume that eg fð Þ is a feasible direction along which θ(f) could be improved.
However, it seems difficult to prove that eg fð Þ really provides an ascent direction. The
following proposition offers an alternative.

Proposition 3 Let eg fð Þ solve the minimum program defined in Eq. (14) for a given f.
If c is strictly monotone, and y ¼ eg 1þ lð Þf þ lyð Þ; l 2 0; 1ð Þ, then y−f is a strict
ascent direction for θ(f) at f.

A proof of this result is provided in Nie and Zhang 2005 thus not repeated here.
We shall revisit this result in Section 4.2 to develop a line search strategy that avoids
solving y explicitly.

4.2 Algorithms

The focus is on the feasible direction algorithms, but for completeness and
comparison purpose a brief review of heuristic and projection-type algorithms is
also given. Besides algorithms included in our study, two recently developed VI
algorithms are worthy of attention. Han and Lo (2002) proposed a simple projection
method that reduces the overhead of performing projection. The method, known as
the modified alternating direction (MAD) algorithm, simplifies the constraint
structure by introducing a vector of Lagrange multiplier (associated with the flow
conservation constraints) into solution variables. An application of this algorithm in
solving a DUE problem was reported in Lo and Szeto (2002). Note that although
MAD simplifies projection, it notably enlarges the solution space which may
negatively impact the overall convergence. Another algorithm, called the
projection and contraction (PC) method, was originally proposed by He (1997)
to solve general continuous and monotone VI problems. He’s original method
includes a line search procedure to find optimal step size. Chen et al. (2001) later
designed a self-adaptive rule to replace the line search in the PC method. They use the
self-adaptive PC method to solve the static traffic assignment problems. The application
of both PC methods for solving the DUE problem is not found in the literature.
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4.2.1 Heuristic algorithms

Heuristic algorithms always try to shift flows from time-dependent non-minimum-
cost path onto the minimum-cost one. The simplest flow-shifting strategy is the so-
called method of successive averages (MSA).

Algorithm MSA

Step 1: Set 1=1/k where k is the iteration index, obtain the new solution by a

f kþ1 ¼ 1� lð Þf k þ leg f k
� � ð17Þ

where eg f k
� �

is defined in Proposition 2.

MSA is known to converge to the optimal solution in the static traffic assignment
problem, as shown in Sheffi (1985). Although existing experiments (Tong and Wong
2000) indicate that MSA can produce a solution that satisfactorily fulfill the dynamic
user equilibrium condition, its convergence in the DUO context has never been
rigorously justified.

4.2.2 Projection algorithms

The simplest version of the projection algorithm involves a single Euclidean
projection in each iteration, i.e., obtaining a new solution by solving

f kþ1 ¼ ΠΩ f k � tc f k
� �� � ð18Þ

To ensure the convergence, the mapping c has to be Lipschitz continuous (with
L), strongly monotone (with μ), and C < 2μ

�
L2 (Theorem 12.1.2, Facchinei and

Pang 2003). A simple revision of the above algorithm, called extra projection, can
reduce the convergence requirement to Lipschitz continuity plus pseudo monotonicity.
The extra projection algorithm performs projection twice in each iteration as below.

yk ¼ ΠΩ f k � tc f k
� �� � ð19Þ

f kþ1 ¼ ΠΩ f k � tc yk
� �� � ð20Þ

Note that the extra projection algorithm (EPA) still requires the estimate of
Lipschitz constant L because its convergence is ensured only if τ is less than L. It is
difficult to predetermine L in the DUO problems. However, a practical resolution
would be starting from an initial guess of τ then reducing it whenever a symptom of
the violation of convergence criterion appears (e.g., a satisfying improvement of merit
function value cannot be achieved in an iteration). This idea is exposited as follows

Algorithm EPA

Step 1: Obtain new solution f k+1 using Eqs. (19) and (20). Evaluate merit function
θ(f k+1). If

θ f kþ1
� �� θ f k

� �
< 0 and θ f kþ1

� �� θ f k
� ��� ��� θ f k

� ��� �� > "; ð21Þ
set C = C × σ, where ɛ and σ are positive scalars between 0 and 1.
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4.2.3 Feasible direction algorithms

We first review a feasible direction algorithm proposed by Zhu and Marcotte (1993),
which is based on Theorem 2. We name it the projection feasible direction algorithm
(PFD) since the algorithm maximizes RMF qt fð Þ along the direction defined by a
projection. The convergence of PFD requires that the mapping c is monotone and
Lipschitz continuous. Nevertheless, unlike algorithm EPA an estimate of Lipschitz
constant is not necessary.

Algorithm PFD

Step 1: Compute yk ¼ ΠΩ f ktc f k
� �� �

. Evaluate qt f k
� �

at yk using Eq. (15) (note
that this requires another projection at yk)

Step2: If

θτ f k
� � � 1

2τ 1� ρð Þ yk � f k
		 		2; ð22Þ

where ρ is a positive scalar smaller than 1, set C = C/σ , σ∈(0,1), then update
f k+1=f k; otherwise, find the largest 1k such that qt zk

� �
> qt f k

� �
, where zk=

(1−λ) f k+yk, then update f k+1=zk.

The Armijo rule is used for line search in Step 2. In order to reduce the number of
line searches conducted in each iteration, the choice of the initial step size is based
on the step size used in the last iteration.

An Armijo line search for PFD

Step 0: Set 1k=min{1.0, 2×1k−1}
Step 1: Compute zk=(1−1) f k+1yk. If θC(zk)>θC(f k) is satisfied, stop; otherwise set

1k=0.5×1k, repeat Step 1.

We now present an alternative feasible direction algorithm (AFD) that minimizes
the generic instead of the regularized merit function, based on Proposition 3. In order
to obtain the feasible direction defined in Proposition 3, one has to solve

y ¼ eg 1� lð Þf þ lyð Þ; ð23Þ

for y, where f is a constant vector and eg (f) minimizes the mathematical program that
defines θ (f). If eg �ð Þ is a contraction mapping, according to Banach fixed-point
theorem, we have (1) the mapping eg �ð Þ has a unique fixed point in Ω, and (2) for any
starting point y0, the following contraction iterate

ykþ1 ¼ eg 1� lð Þf þ lyk
� � ð24Þ

will generate a sequence {yk} converging to the fixed point (Theorem 2.1.21,
Facchinei and Pang 2003). However, it is difficult to show that eg �ð Þ is indeed a
contraction. Even if it is, computing the ascent direction exactly may be
computationally intensive thereby not suitable for practical purposes. We thus
introduce a line search procedure that attempts to move along this ascent direction
approximately.
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Algorithm AFD

Step 1: Compute yk ¼ eg f k
� �

where eg ¼ f k
� �

is defined in Proposition 2. Evaluate
θ (f k) at yk using Eq. (9). Set 1k=min{1.0, 2×1k−1}.

Step 2: Compute zk=(1−1) f k+1yk. If θ (zk)>θ (f k), f k+1=zk ; otherwise, set yk ¼eg zk
� �

and 1k=0.5×1k , repeat Step 2.

AFD updates via Eq. (24) its search direction yk after each line search in the hope
of getting a better approximation to the solution of Eq. (23). Certainly this would be
true only if the mapping eg �ð Þ is a contraction.

Finally, we present a heuristic feasible direction (HFD) algorithm that employs
the solution from an extra projection as a search direction. As noted, the extra
projection algorithm requires weaker conditions for convergence, thus we expect that
it might provide a better ascent direction. To reduce computational cost, the value of
GMF (general merit function) instead of RMF (regularized merit function) is used to
guide the line search procedure. The major steps of the HFD algorithm are
summarized below:

Algorithm HFD:

Step 1: Obtain a new solution yk using Eqs. (19) and (20). Evaluate θ (f k) at yk

using Eq. (14). Set 1k=min{1.0, 2×1k−1}.
Step 2: Compute zk=(1−1) f k+1yk. If θ (zk)>θ (f k), f k+1=zk; otherwise, set yk ¼

ΠΩ f k � tc zk
� �� �

and 1k=0.5×1k, repeat Step 2.

4.2.4 Other implementation issues

To avoid enumerating all paths from the beginning (which is prohibitive for large
problems), a column generation scheme is used to iteratively build the optimal path
set. This requires searching for time-dependent minimum-cost paths (TDMCP)
based on the current loading results. In this study, we adopted a revised version of
the decreasing order of time (DOT) algorithm (Chabini 1998) for column generation.
During each iteration, TDMCP is called to generate shortest paths for each O–D pair
and each departure time interval. The new paths will be added into the path set of a
corresponding O–D pair. Each departure time interval stores its own assignment
elements (each element contains a path pointer and the flow assigned to it). Although
paths will never be deleted from the path set, an assignment element will be removed
from a departure time interval if the assigned flow equals zero.

Performing the aforementioned projection involves solving a quadratic programming
problem. Given the special structure of the feasible set (it is a simplex and decomposable),
this problem can be efficiently solved using the reduced gradient algorithm. Note that
one quadratic programming problem needs to be solved for each O–D pair.

In all experiments, an initial solution f0 is chosen such that demands of each O–D
pair qrs are assigned to initial shortest paths (i.e., the shortest paths when network is
empty), but evenly distributed to each assignment interval.
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The value of θ(f) is a natural convergence measure. Note that the maximum of
θ(f) is zero (Facchinei and Pang 2003), thus |θ(f)| can be used as a termination
criterion. Specifically, an algorithm is terminated when either the iteration number
reaches the maximum allowed value kmax, or the following criterion is satisfied:

q fð Þ ¼ q fð Þeg fð Þ; c fð Þh i � "; ð25Þ

where q fð Þ ¼ min
g2Ω

c fð Þ; g� fh i ¼ c fð Þ;eg fð Þ � fh i. Note that q fð Þ equals to the

duality gap used in Tong and Wong (2000).
For the three feasible direction algorithms (PFD, AFD and HFD), obtaining an

optimal step size is not always possible since the obtained feasible directions are not
necessarily ascent directions. We thus need to avoid the potential “breakdown”
caused by a non-ascent direction. In our implementation, a line search procedure is
forced to terminate as long as the current step size is less than the minimum allowed
value 1min, which is then used to obtain a new solution.

5 Numerical studies on two sample networks

The five DUO algorithms as well as the presented dynamic network loading
model were coded in MS-VC++ and tested on a Windows-XP server (with
3.06 GHz CPU and 2 Gb memory) for two scenarios. The first scenario
considers a network with a single O–D pair connected by two parallel paths. It
is set up to illustrate that the proposed solution framework can produce
numerical solutions comparable to the analytical solution. A more complex
network is used in the second scenario to explore the impact of various traffic
dynamics on equilibrium solutions. The performance of different algorithms was
compared in both scenarios.

In all experiments, we set α=6.4 ($/h), β=3.9 ($/h) and γ=15.21($/h), based on
the empirical study of Small (1982). The starting point of the assignment horizon is
always set as 6:00 AM for convenience. Further, the length of an assignment interval
δ is 1 min, while the size of vehicular quantum is 0.5.

5.1 Scenario I

As shown in Fig. 1, O–D pair 5–6 is connected by paths 1 and 2. The capacities of
links 4–3 and 2–3 (modeled by S–Q dynamics) is set as 2,000 and 1,000 vph
respectively, lower than those of their upstream links (4,000 vph). As such, the
entrances of links 4–3 and 2–3 serve as bottlenecks. To make sure queues only
appear before node 4 or 2, links 1–4 and 1–2 are modeled by the P–Q dynamics
(note that the supply of P–Q model is always treated as infinity). Other parameters
are provided in Fig. 1.
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Fig. 1 Network topology and DUO solution for scenario I. (a) Network topology. (b) DUO solution
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Using the formulas developed in Arnott et al. (1990), we calculate optimal path
departure flow rates as follows

f1 tð Þ ¼
5; 120; 6:07 e t < 6:24
2; 000; 6:24 e t e 6:44
592:3; 6:44 < t e 6:81
0; otherwise

8>><>>: f2 tð Þ ¼
2; 560; 6:14 e t < 6:24
1; 000; 6:24 e t e 6:44
296:2; 6:44 < t e 6:67
0; otherwise

8>><>>:
The total flows assigned to paths 1 and 2 are 1,471 and 529 respectively, while

the optimal commute cost is 2.92$.
Now we examine numerical solutions produced by the DUO algorithms. Figure 1

plots the curves of path flow rates and commute costs against departure times, which
correspond to an equilibrium gap of 0.025. It is easy to verify from the figure that the
DUO conditions are well satisfied. Although the numerical solution does not
replicate the exact analytical results, it captures the duration of the rush hour and the
transition between the formation and dissipation of queues rather accurately.

The number of iterations and CPU time that each algorithm spent to reach the
required accuracy is reported in Table 1. Table 1 also lists the major parameters that
may affect an algorithm’s performance. The parameters are chosen such that the
performance is optimized based on trial-and-error. Note that HFD consumes the least
iterations and CPU time to reach the equilibrium gap of 0.025, followed by AFD and
MSA. PFD and EPR did not converge after 4,000 iterations. A detailed comparison
of convergence performance of the algorithms is reported in Fig. 2. For the sake of
clarity, the results after 250 iterations or 10 s CPU time are ignored. For most
algorithms, the drop of the equilibrium gap is rather sharp in the beginning, and then
significantly flattens as the solution is getting closer to optimum. The EPR algorithm
oscillates strongly in the early stage, probably due to that the value of C is larger than
the Lipschitz constant. Nevertheless, its convergence performance gets improved as

Table 1 Parameters, iteration numbers and CPU times of various algorithms in both scenarios

Scenarios kmax 1min σ C ρ ɛ kc CPU time

MSA I 4,000 0.001 N/A N/A N/A 0.025 1,747 28.9
II 1,000 0.001 N/A N/A N/A 0.05 235 15.3

EPR I 4,000 0.0005 0.9 0.5 N/A 0.025 kmax 103.3
II 1,000 0.0005 0.9 0.5 N/A 0.05 65 5.3

PFD I 4,000 0.001 0.8 0.5 0.95 0.025 kmax 123.9
II 1,000 0.005 0.8 0.1 0.9 0.05 372 32.3

AFD I 4,000 0.001 N/A N/A N/A 0.025 381 16.8
II 1,000 0.001 N/A N/A N/A 0.05 166 18.1

HFD I 4,000 0.05 N/A 0.5 N/A 0.025 248 11.7
I 1,000 0.0005 N/A 5 N/A 0.05 94 11.3

kmax the maximum allowed iteration number, 1min the minimum allowed step size, σ Scalar as described in
Algorithm EPR and PFD, C projection factor, as defined in Eq. (18), ρ as defined in Eq. (22), ɛ the
convergence criterion, as used in Eq. (25), kc number of iterations spent when the convergence criterion
(25) is satisfied, CPU time the seconds of CPU time consumed when the convergence criterion (25) is
satisfied
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C becomes smaller. The convergence curves of feasible direction algorithms look
smoother in general. This is expected since the embedded line search procedure
helps avoid improper step sizes. Further, HFD and AFD consistently outperform
MSA in terms of both iterations and total CPU time consumed, even if they
need to conduct a line search. Finally, the convergence of PFD is relatively
poor in this example. It is possibly due to violations of the assumption that
ensure convergence and/or that the related parameters are not appropriately
selected.
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Fig. 2 Convergence curves of various algorithms for scenario I
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Fig. 3 Average equilibrium link travel delays corresponding to different traffic dynamics. (a) LWR case,
(b) SQ case. Numbers in the parenthesis are link free flow travel times in the unit of loading interval
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5.2 Scenario II

In this scenario, we consider a network similar to that of Nguyen and Dupius (1984),
which is composed of 17 nodes, 23 links and 4 O–D pairs (Fig. 3). Links 14–4, 15–
1, 3–17 and 2–16 are dummy links introduced to facilitate dynamic network loading.
The LWR model with a triangle fundamental diagram is used to describe traffic
dynamics on all non-dummy links except on links 1–5, 4–5 and 4–9. For these three
links we adopt the P–Q model to avoid queues on dummy links. Unless otherwise
specified, the free flow speed, flow capacity, holding capacity and number of lanes
on all non-dummy links are 30 mph, 1,800 vphpl, 200 vpmpl and 3, respectively. To
“create” bottlenecks, the number of lanes on links 9–13, 11–3, and 8–2 is set as 2, 1
and 2, respectively. In order to make it easier to observe spillback, we also reduce
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Fig. 5 DUO solutions for scenario II. (a) O–D pair 14–17, (b) O–D pair 14–16
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the free flow speed on link 5–9 to 10 mph. We set the other parameters to be: T=
6:30 AM, Δ=5 min, t*=6:20 AM, loading interval δt=10 s.

The convergence curves of the five algorithms are given in Fig. 4 (results after
120 iterations or 12 s CPU time are ignored). As reported in Table 1, EPR achieves
the required accuracy with least iterations, followed by HFD, AFD and MSA.
Roughly speaking, the relative performance of the algorithms is similar to that of the
first scenario. However, the computational superiority of the two feasible direction
algorithms, HFD and AFD, is weakened. Note that AFD is always slower than
MSA, even if it needs slightly less iterations to achieve a same equilibrium gap. For
one thing, the complexity of the problem structure might make it harder to fulfill the
convergence requirements. As a result, the adopted feasible directions may deviate
from a truly ascent direction more easily. Moreover, network loading is more time-
consuming in this larger example, making line search relatively more expensive.

For brevity, only the optimal path flow patterns for O–D pair 14–16 and 14–17
are reported in Fig. 5. DUO conditions are approximately satisfied for both O–D
pairs, namely, the path/s used at any departure time have roughly equal and
minimum commute costs whereas any unused ones have higher commuter costs.
Further, the rush hour congestion evolution in this example follows a similar pattern
as depicted in Scenario I, consisting of distinct stages of queue formation, stagnation
and dissipation. Average link travel delays are given in Fig. 3(a). As expected,
upstream links of the designated bottlenecks subject to high average delay, implying
that queues developed on those links during the rush hour. Particularly, the delays on
links 1–5 and 4–5 are caused by queue spillback of link 5–9. The maximum number
of queued vehicles on link 5–9 is 55 vehicles, less than its storage capacity of 75. As
known, spillback can occur well before the holding space runs out because queues
are not necessarily at jam density in the LWR model.

We proceed to investigate how queue spillback affects equilibrium solutions, by
replacing the traffic dynamic model of link 5–9 with the S–Q model. Since the S–Q
model always predicts queue spillback later than the LWR model (Zhang and Nie
2005), it is expected that spillback may not happen in this case.

Figure 3(b) shows the average link travel delays at equilibrium. An immediate
observation is that there is no delay on links 1–5 and 4–5 and the delay on link 5–9
increases by 40%. This is because congestion on link 5–9 did not travel across node

Table 2 Path flow pattern comparison

OD Path ID Path Topology Total flows in LWR case Total flows in SQ case

14–17 6 14–4–9–13–3 223.36 236.62
7 14–4–5–9–13–3 71.41 30.29
8 14–4–9–10–11–3 0.00 0.00
9 14–4–5–6–7–11–3 3.07 18.80
10 14–4–5–6–10–11–3 2.17 11.56
11 14–4–5–9–10–11–3 0.00 0.00

14–16 1 14–4–9–10–11–2 27.75 3.19
2 14–4–5–6–7–8–2 225.33 222.37
3 14–4–5–6–7–11–2 26.67 40.60
4 14–4–5–6–10–11–2 20.25 33.83
5 14–4–5–9–10–11–2 0.0 0.00
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5. A detailed examination shows that the maximum queued vehicles on links 5–9 is
about 65, higher than the LWR case but not high enough to trigger a spillback.
Table 2 compares the path usage at equilibrium for O–D pairs 14–16 and 14–17. For
O–D pair 14–17, the total flow using path 7 drops more than 50% in the S–Q case.
This is due to that the increased queue length on link 5–9 makes the path less
attractive to travelers. For O–D pairs 14–16, the usage of path 3 and 4 is increased
more than 50% in the S–Q case. These two paths attracted more traffic because link
4–5 is free of interference with congestion on link 5–9.

To summarize, this example demonstrates that equilibrium solutions vary
substantially as the propagation speed of queues on a single link is modeled
differently. When one chooses to use certain simplified link traffic flow models one
need to bear in mind the type and extent of approximation errors that one may
encounter in the process.

6 Conclusions

We have studied the dynamic user optimal (DUO) assignment problem considering
simultaneous route and departure time choice, formulated as a discrete variational
inequality (DVI). To evaluate dynamic path travel costs, a mesoscopic dynamic
network loading (DNL) model is developed that considers interactions between links
and the spatial allocation of queues. Various solution techniques for the DUO
problem, particularly those based on feasible directions and line searches, are
examined in this paper.

Our findings from the numerical experiments are summarized as follows:

1. Numerical solutions in both scenarios precisely follow the DUO principle. The
pattern of queue formation, stagnation and dissipation obtained from numerical
results well matches the analytical results.

2. Introducing line searches provides relatively faster and more stable convergence,
compared with the popular heuristic method of successive averages (MSA).
When appropriately implemented, the feasible direction algorithms can outperform
MSA in terms of computational overhead.

3. The dynamic user equilibrium traffic pattern is sensitive to the spatial
distribution of queues. To model queuing phenomena adequately would require
predicting the propagation of queues through links in a realistic way. This in
turn calls for models capable of tracing the moving speed of queue ends (i.e.,
shockwave speed).

A fundamental issue worthy of further investigation is the analytical properties of
the path cost function c. For one thing, the continuity of c in the presence of link
interactions remains an unresolved problem, thus raising the question on the
existence of DUO solutions. Moreover, better understanding the nature of c would
help design more efficient DUO solution algorithms.
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