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An investigation of the optimal short-range routing of a vessel in a stationary random
seaway is presented. The calculations are performed not only in head seas but also
in oblique waves. The evaluation of the added drag is performed by computing the
time average wave force acting on the vessel in the longitudinal direction. Subse-
quently, the added drag is superimposed on the steady drag experienced by the ship
as it advances in calm water. In this manner, the fastest path between the origin
point A and the destination point B can be evaluated, taking into account operational
constraints. To obtain the fastest path between two points, the underlying structure
and properties of the maximum mean attainable speed are analyzed. This detailed
analysis allows us to demonstrate the fastest path for the problem without any
operational constraints to be a straight line. Subsequently, the solution is reevaluated
for scenarios where the original optimal path violates at least one of the operability
criteria considered. For that case, a fastest path is found to be a path consisting of
one waypoint, that is, a two line segment path. In addition to providing a closed-form
fastest-path solution for the case of no operational constraints, a bound is provided
for travel time error for more general speed functions in the case where a straight line
path is followed.

Keywords: maneuvering; sea keeping; ship motions; operations (general)

1. Introduction

VARIOUS ADDED resistance computation methods have been pro-
posed over the years; among these, the methods of Maruo (1957),
Salvesen (1978), Lin and Reed (1976), and Gerritsma and Beu-
kelman (1964, 1972) have been widely used. A thorough compar-
ison between experimental and theoretical results can be found in
the paper by Strom-Tejsen et al. (1973). The method developed
by Salvesen is used here since it has been shown to provide
reliable results over a wide range of vessel types with different
hull forms and transom stern shapes. Salvesen’s method is appli-
cable not only to head seas but also to oblique waves.

The added resistance in regular waves is expressed as a product
of first-order terms, using results obtained from ship motion anal-
ysis. The latter has been performed using the linear ship-motion
strip theory (Salvesen et al. 1970). The added resistance in an

irregular seaway is evaluated using the principle of superposition,
which has been shown to be applicable to seakeeping problems
(St. Denis & Pierson 1953). In long-crested seas, the mean added
resistance can be computed by the formula:

RðV; hÞ ¼ 2

Z1

0

RAWðV; h;xÞ � SðxÞdx ð1Þ

where RAW is the added resistance in regular waves, V is the
vessel speed, x is the wave frequency, h is the ship heading angle
relative to the wave direction, and S(x) is the energy spectral
density.

The computations for this research were performed using the
methods described in this section, which are implemented in the
commercial seakeeping analysis software program Seakeeper
(FDS 2006a). Seakeeper is part of the ship design software suite
Maxsurf (FDS 2006b), which was also employed to model the hull
of the S-175 container ship used in the current investigation. While
fastest-path finding is more relevant for navy and rescue vessels, the
analysis here is for a container ship since the S-175 is a standard
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vessel used in naval research, and it has the most complete set of
specifications and analysis results available to the public.

The seaway is simulated by a wave energy spectrum. In the
current analysis, the International Ship and Offshore Structures
Congress (ISSC) spectrum was used, as it is considered represen-
tative of a fully developed sea in open-sea conditions. The use of
the ISSC spectrum requires the input of two parameters, namely,
the significant wave height Hs and the characteristic wave period,
T1. Both parameters depend on the sea conditions the vessel is
expected to encounter in a specific seaway. Typical sea state
conditions, representative of the North Atlantic and North Pacific
oceans, can be found in Lee et al. (1985). These values were
implemented in the current investigation.

Constraints were introduced in the computational procedure by
evaluating typical operability limiting criteria for each sea state
and ship heading. The probability of slamming, the probability of
deck wetness, the root mean square (RMS) roll value, and the
RMS vertical acceleration values at the vessel’s forward perpen-
dicular (FP) and at the bridge comprise typical operability limit-
ing criteria for merchant vessels (NORDFORSK 1987).

The fastest-path finding problem has been previously discussed
for optimal yacht sailing and vessel routing subjected to weather
effects. Philpott et al. (1993) created a yacht velocity prediction
program and then used the program’s results in dynamic program-
ming algorithms to approximate the optimal paths. Their problem
addresses longer-range trips where time and space homogeneity,
assumed here, could not be exploited, resulting in an approxima-
tion algorithm.

Another group of researchers used the calculus of variations and
optimal control theory to find an optimal vessel route. Faulkner
(1963) and Papadakis and Perakis (1990) used Euler’s equations to
characterize an optimal path, which resulted in a system of differen-
tial equations that need to be solved in order to find the fastest path.
Unlike previously published work, the underlying structure of the
speed functions is explored here, and this provides closed-form and
easy-to-compute solutions to optimal vessel routing. It is also worth
noting that some researchers exploit the analogy between the refrac-
tion of light and fastest paths in their work (Mitchell & Papadimi-
triou 1991); however, this equivalence cannot be applied to our
problem since we assume space homogeneity of the medium.

2. Methodology

The added resistance of the S-175 container ship in irregular
waves was computed for various sea states and vessel headings.
The hull surface was generated in Maxsurf and analyzed in Sea-
keeper. The main particulars of this vessel are demonstrated in
Table 1. The service speed is set at 11.4 m/s, which corresponds
to a Froude number, Fn = 0.275. Experimental data regarding
measurements of added resistance in regular waves are available
in the literature (Fujii & Takahashi 1975, Nakamura 1976).

The computations were performed for Sea States 3 through 7.
The probability of occurrence of the aforementioned sea states
in the North Atlantic and North Pacific oceans is provided in
Table 2. The operability limiting criteria assumed for the S-175
container ship are listed in Table 3.

The calm-water resistance of the S-175 container ship was
computed using the commercial ship resistance evaluation soft-
ware program Hullspeed (FDS 2006c), which is part of the ship
design software suite Maxsurf. The resistance evaluation follows
the method proposed by Holtrop (1984). The seakeeping analysis
was performed in Seakeeper by dividing the vessel into 51
equally spaced stations along its length and using 11 conformal
mapping terms. The analysis was performed for 91 frequency
values to obtain smooth curves for the response amplitude opera-
tors (RAOs).

2.1. Computation of maximum mean attainable speed and
operational constraints

The mean added resistance for various sea states and vessel
headings was computed at different ship speeds, including the
ship service speed. The resulting added resistance curve was then
superposed on the calm-water resistance curve to produce the new
propeller-load curve. The intersection between the propeller-load
curve and the engine-power curve, assuming diesel propulsion
within the service margin allowance giving a fixed engine rpm
condition, yields to the maximum mean attainable vessel speed
for the given sea state and ship heading. An inherent assumption
in this procedure is that the engine is considered to be rpm lim-
ited; that is, a suitably large service margin has been included.

The RMS vertical acceleration at the bridge was computed at a
point 30% LBP aft of amidships, 50% of the ship depth above the
main deck and on the centerline. The RMS vertical acceleration at
the FP was computed at a point located on the main deck and on
the centerline. The probabilities of slamming and deck wetness
were computed assuming that the probability density function of
the vessel motions follows a Rayleigh distribution. The probabil-
ity of slamming was computed at a point 5% LBP aft of the FP on
the centerline and on the baseline using (Ochi & Motter 1973):

Table 1 Main particulars of the S-175 container ship

Length between perpendiculars (m) 175.0

Breadth molded (m) 25.4

Design draft (m) 9.5

Freeboard (m) 7.0

Displacement (tonnes) 24,272

Table 3 Operability criteria values for S-175 container ship

Probability of slamming 0.023

Probability of deck wetness 0.050

RMS vertical acceleration at bridge (m/s2) 1.472

RMS vertical acceleration at FP (m/s2) 1.978

RMS roll (deg) 6.0

Table 2 Sea state occurrences in the North Atlantic and North
Pacific

Sea State

Probability of Occurrence

North Atlantic North Pacific

3 23.70 15.50

4 27.80 31.60

5 20.64 20.94

6 13.15 15.03

7 6.05 7.00
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PðslamÞ ¼ exp
�T2

2m0zr

þ �v2cr
2m0 _zr

� �
ð2Þ

where T is the draft of the vessel at a station 45% of the vessel
length forward of the midship section, and m0zr and m0żr are the
mean square relative vertical motion and velocity at the afore-
mentioned station, respectively.

The critical or threshold velocity, vcr, was computed using
Froude scaling and an empirical estimate by Ochi and Motter
(1973):

vcr ¼ 0:0928 �
ffiffiffiffiffiffiffiffiffiffi
gLBP

p
ð3Þ

where g is the gravity constant.
The probability of deck wetness was computed using:

Pðdeck wetnessÞ ¼ exp
�F2

2m0zr

� �
ð4Þ

where F is the freeboard and m0zr is the mean square relative
vertical motion at a station 25% of the vessel length forward of
the midship section.

The roll motion of the vessel was analyzed using the software
program SEAKEEP.NTD (Beck et al. 2004) to obtain the RMS
roll values. This program also uses the linear ship-motion strip
theory (Salvesen et al. 1970) to calculate the ship motions in
the frequency domain. However, it utilizes Frank’s (1967) close-
fit source distribution method, instead of conformal mapping, for
the calculation of the hydrodynamic properties of the hull sec-
tions. The roll damping coefficient was set to a value of 0.08.
Other computational parameters were set at the values used in
Seakeeper.

3. Numerical results

The computed results of the seakeeping model provide the
maximum mean attainable vessel speed for each given sea state
and ship heading. The vessel speed was calculated for relative
heading directions in the range from 0� (following seas) to 180�

(head seas) relative to the dominant wave direction in increments
of 15�. The maximum mean attainable speed at different ship
headings for Sea States 3 through 7 is plotted in Fig. 1. Voluntary
speed loss is not included.

In Sea States 6 and 7, the maximum involuntary speed loss
occurs around a heading angle of 105�. This result can be
explained by observing plots of the vessel heave and pitch
RAOs for Fn = 0.275 in Figs. 2 and 3, respectively, as well as
equation (1). The energy content of the ISSC spectrum is
contained in a limited range of wave lengths. The fact that the
motions’ peak value shifts to shorter wave lengths with decreas-
ing heading angle, results in larger integral values calculated
through equation (1). In beam seas, even though the pitch motion
is negligible, the substantial heave motion, especially at short
wave lengths, leads to considerable mean added resistance values.

Given that the motion peaks occur at shorter wave lengths for
quartering, beam, and following seas, the assumption of a slen-
der body used in the derivation of both the ship motion strip
theory and the added resistance theory is less valid. Therefore,
the computed values are expected to have less accuracy for ship
heading angles away from the vicinity of 180�. Compared with
experimental data in head seas (ITTC 1987), the heave RAO

Fig. 1 Maximum mean attainable speed for S-175 as a function of ship

relative heading angle and sea state

Fig. 2 Heave RAO at Fn = 0.275 for S-175 as a function of ship

relative heading angle

Fig. 3 Pitch RAO at Fn = 0.275 for S-175 as a function of ship relative

heading angle
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peak is overpredicted, but the pitch RAO is predicted quite
accurately.

The RMS roll values are displayed in Fig. 4. The peak values at
any sea state occur at a ship relative heading angle of 60�. The
computed values for the probabilities of slamming and deck wet-
ness are displayed in Figs. 5 and 6, respectively. For Sea States 3
through 5, the probabilities of slamming and deck wetness are
zero; thus, they are not depicted in the corresponding figures.
The RMS vertical acceleration values at the bridge and the FP
are displayed in Figs. 7 and 8, respectively.

4. Optimal path

In severe sea states, the vessel operation is mostly limited by
the ship motions relative to operational constraints rather than
added resistance. Therefore, both effects were investigated: invol-
untary speed loss caused by added resistance and the limitations
imposed by operational constraints.

Fig. 4 RMS roll for S-175 as a function of ship relative heading angle

and sea state

Fig. 5 Probability of slamming for S-175 as a function of ship relative

heading angle and sea state

Fig. 6 Probability of deck wetness for S-175 as a function of ship

relative heading angle and sea state

Fig. 7 RMS vertical acceleration at the bridge for S-175 as a function

of ship relative heading angle and sea state

Fig. 8 RMS vertical acceleration at the F.P. for S-175 as a function of

ship relative heading angle and sea state
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4.1. Maximum mean attainable speed analysis

In Fig. 1, the computed maximum mean attainable speed is
plotted as a function of relative heading angle for each given sea
state. In order to perform a complete analysis of the speed data,
speed values for intermediate heading angles were obtained
through linear interpolation.

In this research, the vessel routes are assumed to not be long
enough for the seaway to evolve from one sea state to another.
Thus, the assumption is made that the sea state is a fixed parame-
ter for any given trip. This optimal short-range routing is applica-
ble to a wide range of applications, such as naval ships, coast
guard patrols, recreational vessels, and tenders and refueling ves-
sels servicing larger ships. It is also worth noting that since the
maximum mean attainable vessel speed in a stationary seaway
only depends on the heading and not on the vessel location or
time, we can conclude that the seaway considered here is homog-
enous over space and time.

After analyzing the numerical maximum mean attainable speed
results, it was concluded that no analytical function can ade-
quately explain the variation of the speed data for Sea States 5
through 7. However, another approach to vessel speed data analy-
sis was found to be more successful. Maximum attainable vessel
speed polar plots for the S-175 numerical results, shown in Fig. 9,
reveal a useful property of the speed functions. Specifically, the
vessel polar plots for each sea state enclose a convex linear path
attainable region.

For a given sea state, each maximum vessel speed polar plot
bounds a region of the sea that a vessel can reach along a straight
line path within one unit of time (1 hour for speed measured in
knots) from the origin [point (0,0)]. We call such an area of the
sea a linear path attainable region for point (0,0). These attain-
able regions for our numerical results of the maximum mean
attainable speed for the S-175 are convex sets for all sea states
(i.e., the line segment connecting any two points in the set is fully

contained in that set). Proposition 1 below conveys the signifi-
cance of the linear path attainable region convexity property.

Proposition 1. A fastest path from point A to point B is a path
along the straight line connecting these two points if the set of all
points that a vessel can travel to along a straight line within one
unit of time is convex (i.e., if the linear path attainable region is
convex).

Note that this might not be the only path corresponding to the
minimum travel time between the two points, but rather there is
no path for the convex linear path attainable region that is faster
than straight line path AB. See the Appendix for a proof of
Proposition 1.

Proposition 1 guarantees that the fastest travel path from the
origin point A to the destination point B is the straight line seg-
ment AB. However, some of the traveling directions might not be
feasible. In particular, the adopted seakeeping operability limiting
criteria render some of these traveling directions infeasible. The
fastest path according to Proposition 1 will not be feasible if
the traveling direction AB violates at least one of these con-
straints. In that case, we need to seek an alternative route. In fact,
if some of the ship headings are not feasible because of the
adopted constraints, the constrained linear path attainable region
(corresponding to those destinations that are feasibly reachable
within one unit of time) will not be convex; thus, Proposition 1
will not be applicable.

Figures 10 to 12 illustrate the constrained linear path attainable
regions for the S-175 in Sea States 5 through 7, respectively,
taking into account all the operational constraints listed in Table 3.
Thus, it is essential to understand how the fastest-path travel time
changes if the linear path attainable region is no longer convex.
A bound on the shortest travel time error will be derived assum-
ing that a straight line path is implemented for a nonconvex
attainable region situation.

Fig. 9 Linear path attainable regions for S-175 for Sea States 5

through 7

Fig. 10 Constrained linear path attainable regions for the S-175 for

Sea State 5
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4.2. Bound on the optimal travel time for a nonconvex
linear path attainable region

Let S denote a linear path attainable region centered at point A,
and suppose it is not convex. Then, a bound on the potential
decrease in travel time from A to B can be derived by following

the optimal (not necessarily linear) path instead of the straight
line path. Consider S0: = conv(S); that is, S0 is the convex hull of
set S, or S0 is the smallest convex set that fully contains set S.
Also, define K and K0. K = AB ˙ bd(S) and K0 = AB ˙ bd(S0),
where bd(X) denotes the boundary of a set X (see Fig. 13). Then, a
bound on the optimal travel time, t*, for a nonconvex attainable
region can be derived:

dðABÞ
dðAK0Þ # tB #

dðABÞ
dðAKÞ ð5Þ

b ¼ dðAKÞ
dðAK0Þ # 1 ð6Þ

btðABÞ# t* # tðABÞ ð7Þ
where t(AB) is the travel time along straight line path AB, d(AB) is
the distance between points A and B, and tB is a nondimensional
bound variable.

From equation (6) and inequality (7), we can conclude that
the vessel travel time would decrease at most by (1 � b)�100%
if the vessel follows an optimal path instead of traveling along the
straight line path from A to B. This bound is especially important
for finding the trade-off between time spent to find the optimal
solution and improvement in the total travel time possible.

4.3. Fastest path for a constrained linear path attainable
region

The lower bound on the smallest travel time obtained in in-
equality (7) is also important in finding the optimal solution for
the constrained fastest-path problem. It was noted earlier that
added operational constraints introduce intervals of infeasible
heading directions as shown for Sea States 6 and 7 in Figs. 11
and 12, respectively. Proposition 2 below provides one of several
fastest paths from A to B, if the heading direction AB belongs to
one of these infeasible heading intervals. To prove that the pro-
posed path is in fact a fastest path, the travel time for this path is
shown to be equal to the lower bound on travel time computed in
equation (7).

Proposition 2. Suppose the heading direction of the path AB
belongs to (ha, hb), where (ha, hb) is the interval of infeasible
heading directions. Then, if the vessel unconstrained linear path
attainable region is convex, a fastest path from point A to point B
is a path ACB where AC has a heading angle ha and CB has an
angle hb.

Fig. 12 Constrained linear path attainable regions for the S-175 for

Sea State 7

Fig. 11 Constrained linear path attainable regions for the S-175 for

Sea State 6

Fig. 13 Computing bound on an optimal travel time for nonconvex

attainable region

126 SEPTEMBER 2009 JOURNAL OF SHIP RESEARCH



Proof. Let V(h) denote the vessel speed as a function of head-
ing direction h. Then, define points x and y as x = A + [V(ha) cos
(ha � 90�), V(ha) sin (ha � 90�)] and y = A + [V(hb) cos (hb �
90�), V(hb) sin (hb � 90�)] (see Fig. 14). Note that points x and y
lie on the boundary of the constrained linear path attainable re-
gion S centered at A. Hence, the travel time from A to either one
of these points is equal to 1 unit of time. Recall that point K0 is the
intersection point of line segment AB and the boundary of the
convex hull of S. Then, point K0 can be expressed as K0 = lx +
(1 � l)y for 0 # l # 1, since K0 lies in the convex hull of set S.
Note that point K0 can be reached in one unit of time following
the path AC0K0 where C0 = A + l(A � x); that is, AC0 k Ax and
C0K0 k Ay. If the path AC0K0 is scaled up by a factor of d(AB)/
d(AK0), path ACB is obtained with the total travel time d(AB)/
d(AK0). Note that travel time for path ACB is equal to the lower
bound on the optimal travel time in inequality (7). Hence, path
ACB is an optimal path from A to B.

An alternative proof follows from the fact that triangle Axy is
similar to triangle C0xK0 where the corresponding sides lengths
ratio is equal to (1 � l).

This proposition implies that the fastest path would be to follow
the direction of either one of the boundary heading angles, until
the other boundary direction would deliver the vessel to the re-
quired destination. It needs to be mentioned that there are several
paths with the minimum travel time. Figure 14 illustrates an appli-
cation of Proposition 2 to find two of the fastest paths for Sea
State 7 (both paths ACB and ADB have the minimum travel time).

Note that for the constrained linear path attainable region, the
straight line path AB is still optimal if its heading direction is
feasible. To show that this is true, observe that b = 1 in inequality
(7) for this scenario; hence, travel time for a straight line path is
equal to the lower bound on optimal travel time.

5. Discussion and conclusions

Proposition 2 establishes a fastest path from A to B to consist of
two sequential line segments AC and CB, if heading AB belongs
to an infeasible heading interval (ha, hb). Here, line segment AC
has a heading angle ha, and CB has a heading angle hb. While

ACB is proven to be an optimal path, in practice, an actual vessel
is incapable of making a sudden heading change from ha to hb and
hence cannot follow this fastest path. A control-feasible path from
A to B would have to replace a sharp turn at point C by a smooth
curve tangential to AC and CB (see Fig. 15).

However, if a vessel were to follow this smoothed path, the part
of the path that deviates from ACB corresponds to infeasible
headings that span the interval (ha, hb). Thus, this path could
violate the active operability limiting criteria at these headings
during the turn. To produce a path that violates neither vessel
control system limitations nor operational constraints, a vessel is
required to slowdown while making the turn. By reducing the
nominal speed while traveling in the heading directions within
the interval (ha, hb), the vessel motions are decreased, thus,
making these headings feasible. This voluntary speed loss results
in new attainable regions. For instance, attainable regions with

Fig. 14 Fastest paths from A to B are ACB and ADB

Fig. 15 Controls feasible path from A to B is a smooth curve

Fig. 16 An example of linear path attainable regions for the S-175

corresponding to voluntary speed loss at Sea State 7
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voluntary speed loss for the S-175 for Sea State 7 are shown in
Fig. 16. For most ship headings, the maximum mean attainable
speed corresponds to the value required to avoid exceeding one of
the operability limiting criteria rather than overcoming the added
resistance.

While voluntary speed loss results in additional feasible head-
ings, the new linear path attainable region often loses its convex-
ity, which is a necessary condition for both Propositions 1 and 2.
Hence, these propositions cannot be used to find a fastest path for
attainable regions such as the one shown in Fig. 16. This conclu-
sion leads to an interesting topic for future research: computation
of the fastest path for a nonconvex linear path attainable region.
For instance, the operational constraints considered here result in
a set of infeasible headings. This situation corresponds to segment
“cut-out” from otherwise convex attainable regions. Proposition
2 defines a fastest path for these cases. However, other constraints
might result in more general modifications to the linear path
attainable regions and also result in an arbitrary nonconvex set.
Ongoing research will address this more wide-ranging case. In
addition, relaxing time and/or space homogeneity of the sea do-
main as well as introducing stationary obstacles are other interest-
ing extensions to explore.

While the presented analysis is restricted to finding a path that
minimizes the total travel time, the same results are valid for
other path-optimizing problems. In the case of a fastest-path
problem, the linear path attainable region is defined to be the set
of points a vessel can travel to in a single unit of time. Likewise,
the problem of finding a path minimizing the fuel consumption of
a vessel can be addressed by redefining the linear path attainable
region to be a set of points a vessel can travel to while consuming
a single unit of fuel. Thus, the results simply translate to other
optimization problems and a wide area of applications.
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Appendix: Proof of Proposition 1

Proposition 1. A fastest path from point A to point B is a path
along the straight line connecting these two points if the set of
points that a vessel can travel to along a straight line within one
unit of time (linear path attainable region) is convex.

Proof. Let S(x,y,a) be a set of points that a vessel can travel to
along a straight line path within a units of time from point (x,y).
S(x,y,1) is the linear path attainable region discussed earlier. Since
convexity of S(x,y,1) implies that set S(x,y,a) is convex, and vice
versa, we need to show that if S(x,y,a) is convex, a fastest path
from point A to point B is a path along the straight line AB.

Path traveled by a vessel along any rectifiable curve from A to
B can be approximated by a set of straight line segments, such
that segments ends lie on the curve. As the number of segments
approaches infinity, the length of the curve approaches the sum of
straight line segments lengths (see Fig. A1). Thus, to show that
the path along straight line AB is a fastest path from A to B, we
need to show that traveling between any two points, call them A0

and B0, is never faster along path A0HB0 for an arbitrary H than
along the straight line A0B0.
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Select an arbitrary point H that does not lie on the line connect-
ing A0 and B0. We show that traveling time along straight path
A0B0, written as t(A0B0), is never greater than traveling time along
path A0HB0, t(A0HB0) (Fig. A2). Note that since vessel speed only
depends on the heading angle, using the traveling time additive
property we can conclude that t(A0HB0) = t(A0H) + t(HB0).

Hence, we need to show that t(A0B0) # t(A0HB0):

1. Let t(A0H) = a, find C that lies on line lA0B0 such that t(A0C) = a,
where lA0B0 is the line connecting A0 and B0. For any two points
P = (xP,yP) and Q = (xQ,yQ) we define distance d(P,Q) as:

dðP;QÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxP � xQÞ2 þ ðyP � yQÞ2

q
ðA1Þ

Since the vessel speed only depends on the heading angle,
from the traveling time proportionality property we can con-
clude that if d(A0,C) � d(A0,B0), then t(A0B0) # a! t(A0B0) #
t(A0H) # t(A0HB0) and the proposition is proven.

2. Assume d(A0,C) , d(A0,B0). We know that for any nonempty
convex set X and any x0 lying on the boundary of set X, there
exists a supporting hyperplane to X at x0. Given that S(A0, a) is
convex, we can find its supporting hyperplane at point C, call
it FC. Since H belongs to S(A0,a), H also belongs to the same
half-space as A0.

3. Let E = FC ˙ HB0 (see Fig. A3). Note that in the extreme
scenario H lies on FC, then E = H.

4. Find D such that ED k CB0, and D lies in the same half-space
as B0 relative to the hyperplane FC. Given that vessel speed
only depends on the heading angle, we know that traveling
time along any given vector is independent of the vector loca-
tion. Thus, t(CB0) = t(ED) (see Fig. A4).

5. Let FD be the supporting hyperplane to S[E, t(ED)] at point D,
which is parallel to FC. Then, B

0 lies on FD and t(EB0) �
t(ED). From that and the fact that vessel speed is time and
space homogeneous we obtain that t(HB0) � t(EB0) � t(ED) =
t(CB0).

6. But then t(A0B0) = t(A0C) + t(CB0) = a + t(CB0) = t(A0H) +
t(CB0) # t(A0H) + t(HB0) = t(A0HB0).

Fig. A1 Curve path approximation

Fig. A2 To show t(A0B0) � t(A0HB0)

Fig. A3 Supporting hyperplane �C

Fig. A4 Traveling time t(CB0) = t(ED)
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