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Chapter 1

Introduction

1.1 Background

Travel reliability is a critical performance dimension of transportation systems and ser-

vices. It enables people and firms to make better use of available resources, including

time, through effective personal and business activity scheduling. Shippers and freight

carriers need predictable travel times to fulfill on-time deliveries and other commitments

in order to remain competitive. The ability to arrive on-time with high reliability is im-

perative to emergency responders. However, urban transportation systems are affected

by uncertainties of various sorts, which can be broadly classified as those affecting the

supply of transportation (e.g., weather, accidents, natural and man-made disasters) and

those associated with the demand for transportation (e.g., travel and activity behavior,

special events). Taken individually or in combination, these factors could adversely af-

fect and perturb the quality of transportation services. Travel behavior researchers have

established that unanticipated long delays on highways typically produce much worse

frustration among motorists than ”predictable” ones. The U.S. Federal Highway Ad-

ministration (FHWA) estimates that 50-60% of congestion delays in most metropolitan

areas are non-recurrent, and the percentage is even higher in smaller urban areas (FHWA

2000). To hedge against travel time fluctuations, travelers have to budget a sizable time

buffer. In 1982, a 20-minute free-flow trip requires on average an extra 12-minute buffer

time if on-time arrival is important (FHWA 2005). In contrast, the same trip would re-

quire 60% more buffer time in 2003. The reliability issue is likely to get still worse in

the years to come, in light of limited capacity addition in the face of continuing growth
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in demand. Integrating travel reliability into transportation network analysis methods

presents a pressing challenge that is of both theoretical and practical importance. This

research addresses a particular aspect of this important subject, namely route guidance

that respects the reliability requirement. The focus is to develop methods and procedures

to implement reliable route guidance, and moreover, to demonstrate its utility.

1.2 Route guidance and reliability

Motorists are becoming increasingly dependent on route guidance to plan unfamiliar

trips. Just like a search engine can help internet users to locate useful information on

web, a route guidance system finds best routes for motorists from a complex road system.

As of today, many personal vehicles have built-in or adds-on GPS-based route guidance

systems which can provide en-route guidance. Some of these equipments can even re-

ceive and make use of real-time traffic information. In the absence of such an in-vehicle

unit, a priori driving directions (e.g. those provided by Internet-based map engines) are

often used in trip planning.

Most existing route guidance systems assume that the road travel times are deter-

ministic. When the stochastic nature of the system is acknowledged, the mean value

is usually employed as the nominal travel time when computing optimal routes. How-

ever, our day-to-day experience suggest that not only travel time is random, but also a

route with minimum mean travel time may be subject to large variances and therefore

not always reliable. This is especially true in large metropolitan areas where random

disruptions of various sorts consume a large portion of the total journey time. Figure 1.1

shows an example from Chicago area. The right panel in the figure displays the empir-

ical distribution of travel times observed in weekday morning rush hour on a stretch of

freeway that connects Chicago downtown to Ohare International Airport (shown in the

left panel), the second busiest airport in the US. Note that the travel times vary from as

low as about 15 minutes to as long as 80 minutes in that period. In light of the magnitude

of the variance, it is not surprising that the travel time estimated by existing route guid-

ance systems often turns out to be wildly inaccurate. Moreover, the figure also shows

that if a traveler wish to capture the flight on time with a 90% chance, 48 minutes has
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Figure 1.1: An illustration of travel time variances in the Chicago area

to be budgeted for travel, which is more than 50% more than the mean travel time (31

minutes). Existing route guidance systems neither allow users to incorporate the above

reliability concerns into route choice, nor provide such information for recommended

routes. Consequently, these systems essentially leave it to drivers to choose between run-

ning the risk of being late or budgeting a large buffer time, of which much is likely to be

wasted. Reliable route guidance studied in this research addresses precisely these issues.

Reliable route guidance promises to enhance mobility and allow travelers to make

better use of their time, in that it helps avoid overly conservative time budget. Reliable

routing is also useful to freight carriers and parcel delivery firms whose trucks must

move through peak-period traffic and work zones on a regular basis. Reliable route

guidance allows these carriers to evaluate alternative routing plans for their fleets against

the likelihood of on-time delivery, which is often an important performance index in the

trucking industry.

In this research, the problem of generating reliable route guidance is modeled as

the reliable a priori shortest path problem (RASP). The RASP problem aims to find a priori

paths that are shortest to ensure a specified probability of on-time arrival. (Nie & Wu

2009b) showed that the RASP problem belongs to a class of multi-criteria shortest path

problems, which rely on a dominance relationship to obtain Pareto-optimal solutions,

that is, no travel time improvement associated with any on-time arrival probability can
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be further made without worsening those associated with other probability levels. Thus,

the solution to the RASP problem is a reliable path set (instead of a single path) from

which a motorist can pick the best corresponding to his/her desired origin/destination

and the level of reliability.

Previous studies (Nie & Wu 2009b, Nie & Wu 2009a) have given the mathematical

formulation for the RASP problem, examined the analytical properties and designed

various solution algorithms. The goal of this research is to resolve the relevant imple-

mentation and deployment issues in order to move the techniques one step further to

practice, and potentially commercialization. To these ends, three key issues are identi-

fied and addressed. The first is acquiring necessary data to prepare inputs for the RASP.

Most important of all are road travel time distribution data, which are not directly avail-

able from existing traffic data collection and archiving practice and therefore have to be

constructed from raw data. Second, the benefits of reliable routing over the conventional

routing modes are demonstrated using real data. Finally, through comprehensive nu-

merical experiments, this report verifies the feasibility of existing solution techniques in

generating reliable route guidance on very large regional networks.

1.3 Organization

The organization of this report is as follows. Chapter 2 briefly reviews the literature

on reliable routing guidance. Chapter 3 presents the mathematical formulation and

solution algorithms for the reliable routing problem. Chapter 4 describes an object-

oriented computer implementation of the RASP algorithm and introduces the graphic

user interface of Chicago Travel Reliability (CTR). Chapter 5 provides an overview of

the case study and describes how input data are obtained and processed, particulary the

methods to be used where traffic data are not available. Chapter 6 reports and discusses

experiment results from the case study. Chapter 7 concludes the study with a summary

of findings.
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Chapter 2

Literature

Route guidance algorithms direct vehicles from an origin to a destination along a path

that are considered “optimal” one way or another. Depending on whether or not the

guidance is coordinated by a central control unit, the algorithms can be classified as

“centralized” or “decentralized”. They can also be labeled as “adaptive” or “a prior”,

according to whether or not en-route re-routing is allowed. Two other factors that are

often used in classification are dynamics (i.e., if travel time varies over time of day) and

uncertainties (i.e., if travel time is random). This research considers decentralized, a

prior route guidance for stochastic and static networks 1. The focus is to incorporate

travel reliability as an integrated objective of route guidance. By static, we mean that

the travel time distributions remain constant within each routing process. We have to

restrict to the static case not because of methodological limitations 2, but rather due to

data availability. The static label does not exclude, however, the possibility of changing

travel time distributions according to time-of-day from one routing process to another.

As shown in the case study, reliable routes generated for morning rush hour are likely

to be different from those for evening peak period.

When uncertainties are concerned, “optimal” routing has many different meanings.

A classic definition considers a routing strategy optimal if it incurs the least expected

travel time (LET). Another common definition of optimality in stochastic routing has to

do with reliability, recognizing that a LET route (or policy) may be subject to high risks

1Corresponding “adaptive” problems are related to “a prior” counterparts, and are usually simpler to
solve.

2Note that both Miller-Hooks (1997) and Nie & Wu (2009b) deal with “dynamic” version of the problem.
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and therefore is not desirable to a risk averse traveler.

2.1 LET problems

Finding LET paths is trivial when random link travel times are independently distributed

and do not vary over time. Non-trivial LET problems are revealed when these assump-

tions are relaxed. An important variant is the adaptive LET problem with recourse in

which traversal time on a link will become known and deterministic upon the arrival of

its tail (starting) node (e.g. Croucher 1978, Andreatta & Romeo 1988, Polychronopoulos &

Tsitsiklis 1996, Cheung 1998, Gao & Chabini 2006, Waller & Ziliaskopoulos 2002, Provan

2003). Correlations between link travel times are explored in Waller & Ziliaskopoulos

(2002) and Fan, Kalaba & Moore (2005b). Both studies consider only the adaptive LET

problem and assume the knowledge of transitional probabilities which depict spatial cor-

relations between adjacent links. Another class of problems assume that link travel time

distributions are conditional on the arrival time at link entrance. Both a priori and adap-

tive variants of the problem have been studied (e.g., Hall 1986, Fu & Rilett 1998, Miller-

Hooks & Mahmassani 2000, Miller-Hooks 2001, Fu 2001). Due to the absence of the

Markovian property, finding LET paths over stochastic and time-dependent networks is

difficult. Existing solution procedures are either pure heuristics (Fu & Rilett 1998) or

non-deterministic polynomial (Miller-Hooks & Mahmassani 2000).

2.2 Reliability-based problems

It has been recognized that the LET path may be subject to high risk since it overlooks

travel time variances. This concern gives rise to the reliability-based stochastic routing

problem. Reliability-based stochastic routing has been studied extensively, with the ma-

jority of the literature focused on a priori path problems.

2.2.1 Reliable a priori shortest path problem

In his seminal work, Frank (1969) defines the optimal path as the one that maximizes

the probability of realizing a travel time equal to or less than a given threshold. The

distributions of all link travel times are continuous, and the convolution integral is calcu-
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lated using characteristic functions. The shortest paths are identified through a pairwise

comparison in a set of enumerated paths. Since this method requires path enumeration,

applying it in large networks is difficult.

Mirchandani (1976) presented a recursive algorithm to solve a discrete version of the

Frank’s problem (1969). However, the algorithm is suitable only for very small instances

since it requires to enumerate not only all paths but also all travel time possibilities for

each path through a network expansion.

Sigal, Alan, Pritsker & Solberg (1980) suggested using the probability of being the

shortest path as an index to define the optimality. For path l, the optimality index R l is

defined as:

Rl = P(Yl ≤ Y1, Yl ≤ Y2, · · · , Yl ≤ Yk, · · · , Yl ≤ Ym) (2.1)

where k = 1, · · · , m and k �= l. Equation (2.1) is transformed to a multi-integral equation.

To solve that multi-integral equation, a set of path-independent links, i.e., a set of links

such that no two links in the set are on the same paths, are needed. Again, it is difficult

to determine such a set unless all paths are enumerated.

The expected utility theory of von Neumann & Morgenstern (1967) has also been

used to define path optimality. In Loui (1983), a path weight (cost) is defined as

πrs
k = ∑

∀ij s.t. δk
ij=1

cij (2.2)

where cij is the weight (cost) on link ij, krs refers to a path from node r to node s; and

δk
ij = 1 implies that link ij is traversed by path krs, otherwise, δk

ij = 0.

Given a utility function u(x) that is monotonically decreasing in x, path krs is pre-

ferred to path lrs if and only if u(πrs
k ) > u(πrs

l ). Therefore the optimal path is defined

as

k∗rs ≡ arg max
krs∈Krs

[u(πrs
k ))] (2.3)

where Krs is the set of all paths between OD pair rs. Loui (1983) showed that the Bell-

man’s principle of optimality applies to affine or exponential utility functions. This

restriction was independently observed in Eiger, Mirchandani & Soroush (1985). For a

general polynomial and monotonic utility function, Loui’s expected-utility problem can
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be reduced to a class of bi-criterion shortest path problems that involves mean and vari-

ance of a path. In effect, this reduction allows one to tradeoff the expected value and

variance (reliability) using generalized DP (see, e.g., Carraway, Morin & Moskowitz 1990)

based on pareto optimality (or dominance relationship). More general nonlinear util-

ity functions may be approximated by piecewise linear functions, see, e.g. (Murthy &

Sarkar 1996, Murthy & Sarkar 1998), who also proposed a few efficient solution pro-

cedures based on relaxation. The mean-variance tradeoff has been treated in different

ways. For example, Sivakumar & Batta (1994) adds an extra constraint into the short-

est path problem to ensure that the identified LET paths have a variance smaller than a

benchmark. In Sen, Pillai, Joshi & Rathi (2001), the objective function of stochastic rout-

ing becomes a parametric linear combination of mean and variance. In either case, DP

cannot be applied. Instead, nonlinear or integer programming solution techniques must

be used.

Stochastic routing has also been discussed in the context of robust optimization, that

is, a path is optimal if its worst-case travel time is the minimum (Yu & Yang 1998, Monte-

manni & Gambardella 2004). However, such robust routing problems are NP-hard even

under restrictive assumptions (Yu & Yang 1998).

Bard & Bennett (1991) defined the optimal path as the one that maximizes the ex-

pected utility in a stochastic acyclic network. Compared with the study of Loui (1983)

where utility functions have to be polynomial and monotonic, Bard & Bennett (1991)

only require that the utility function to be non-linear and monotonic. In order to solve

the global optimal path, all paths have to be enumerated. To improve computational

performance, the authors proposed to reduce the network size using first order stochas-

tic dominance (FSD). Specifically, if a path is dominated by other(s) in the first order,

the links on that path can be eliminated. Since FSD is only a necessary condition, other

criteria for link elimination were also proposed. To apply FSD, all link travel time dis-

tributions are discretized by N support points, so xi < yi, ∀i = 1, · · · , N implies that X

dominates Y, i.e., X �1 Y. In fact, the FSD condition is relaxed in Bard & Bennett (1991)

as ”post median stochastic dominance”, in which only the points on the tail of CDF (in-

stead of the entire CDF) are checked. Bard & Bennett (1991) observed that 90% of paths
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in an acyclic network can be eliminated after link reduction. Therefore, finding optimal

path through enumeration is easier in the reduced network. The algorithm, however, can

only be applied to acyclic networks, and thus it is not suitable for large real networks.

Miller-Hooks & Mahmassani (1998) defined the optimal path in a stochastic and time-

varying network as the one that realizes the least possible travel time. Miller-Hooks

(1997) and Miller-Hooks & Mahmassani (2003) explored three other types of optimal-

ity: 1) deterministic dominance, 2) the first-order stochastic dominance, and 3) expected

value dominance. Label-correcting algorithms are proposed to find non-dominated paths

under the stochastic dominance rules. Recognizing that the exact algorithm does not

have a polynomial bound, heuristics are considered (Miller-Hooks 1997) which attempt

to limit the size of the retained non-dominant paths by a predetermined number. As

noted in Miller-Hooks (1997) (Chapter 5), however, these heuristics may not identify any

non-dominant paths.

Reliability has also been defined using the concept of connectivity (Chen, Bell, Wang

& Bogenberger 2006, Kaparias, Bell, Chen & Bogenberger 2007). This approach models

reliability as the probability that the travel time on a link is greater than a threshold.

Accordingly, the reliability on a path is the product of link reliability (assuming inde-

pendent distributions). A software tool known as ICNavS was developed based on this

approach (Kaparias et al. 2007).

2.2.2 Reliable adaptive routing problem

Another class of reliable routing problem has to do with adaptive policy instead of a

priori path. Bander & White (2002) studied the reliable adaptive routing problem by

imposing penalty on early and late arrival for a pre-defined arrival time. The objective

is to determine a policy Π∗ such that the expected penalty under Π∗ is always less than

the expected penalty under any other policy Π. The problem can be solved via dynamic

programming similar to that in Miller-Hooks & Mahmassani (2000). However it requires

to enumerate all policies. Bander & White (2002) then proposed a heuristic algorithm

AO∗ to solve the problem. AO∗ is a heuristic search technique that is shown to be

more computationally efficient than dynamic programming when the lower bound on

CCITT 9



Literature

the value function are available. However, AO∗ can only be applied to acyclic network.

Fan, Kalaba & Moore (2005a) studied an optimal routing problem known as stochas-

tic on time arrival (SOTA) problem. SOTA attempts to find an optimal adaptive routing

policy that maximizes the probability of arrival on time given a travel time budget. De-

note ui(t) as the maximum probability of arriving at the destination from node i within

a given time budget t. Suppose j is the next node to traverse, and ω is the travel time on

link ij, s is the destination, and T is the time budget given at the origin node r. Fan et al.

(2005a) formulated SOTA as a system of integral equations as follows (with Equation

(2.5) giving the boundary condition).

ui(t) = max
j �=i

∫ t

0
pij(ω)uj(t − ω)dω, ∀i ∈ N, i �= S, 0 ≤ t ≤ T (2.4)

us(t) = 1, 0 ≤ t ≤ T (2.5)

Note this formulation assumes that the link travel time is an independent random vari-

able. Nie & Fan (2006) proposed a discrete version of the SOTA problem and a solution

algorithm called ”increasing order of time budget (IOTB)”.

2.3 Prior work

This research is based on the prior work of Nie and Wu (2009b, 2009a, 2009), which

defines the objective of routing as maximizing the probability of arriving on-time and

formulates the problem using general dynamic programming. This definition of opti-

mality is identical to that of Frank (1969) and closely related to the first-order stochastic

dominance of Miller-Hooks & Mahmassani (2003). The definition is adopted because it is

intuitively addresses drivers’ concern about travel reliability. Solving the above reliable

routing problem on real networks has been considered impractical because it requires

path enumeration. Nevertheless, this research is built on the premises that recent ad-

vances in algorithmic development and computer technology warrants a fresh look at

this once “intractable” problem. The formulation of the problem and its solution algo-

rithms are presented in Chapter 4.
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Chapter 3

Formulation and Algorithm

In this section, we introduce the mathematical formulation and solution algorithm for

the reliable a priori shortest path (RASP) problem, which aims to find a priori paths that are

shortest to ensure a specified probability of on-time arrival. We first introduce notation

in Section 3.1.

3.1 Notation

Consider a directed and connected network G(N ,A,P) consisting of a set of nodes N
with the number of nodes |N | = n, a set of links A with the number of links (|A| = m),

and a probability distribution P describing the statistics of link travel times. The analysis

time period is set to [0, T]. Let the destination of routing be node s and the desirable

arrival time be aligned with the end of the analysis period T. The traversal times on

different links (denoted as cij) are assumed to be independent random variables, each

of which follows a random distribution with a probability density function pij(·) and

let Fij(·) be the cumulative density function (CDF) of cij. The link traversal times are

assumed to be independent in our numerical tests.

The travel time on path krs (which connects node r and the destination s) is denoted

as πrs
k . All paths that connect node r and s form a path set Krs. Finally, let urs

k (·) denote

the CDF of πrs
k . Therefore, urs

k (b) represents the maximum probability of arriving at

destination s through path krs no later than T, departing r with a time budget b.

11
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3.2 A RASP formulation derived from stochastic dominance

The RASP problem is highly related to stochastic dominance (SD), a theory that has been

extensively used in finance and economics to compare random quantities. We briefly

review the SD theory in the following and reveal how it defines the optimality for the

RASP problem.

Conventionally, the first order stochastic dominance is defined as follows.

Definition 3.1 (FSD �1) A random variable X dominates another random variable Y in the

first order, denoted as X �1 Y if FX(t) ≤ FY(t)∀t and at least one strict inequality.

With Definition 3.1, Theorem 3.1 is a well-known result (see e.g. Levy & Hanoch

1970).

Theorem 3.1 X dominates Y in the first order if and only if E[U(X)] ≥ E[U(Y)], for any

nondecreasing utility function U(·), i.e., U′ ≥ 0.

Definition 3.1 is based on the circumstance that decision-makers are always better off

with more quantities of the random variable of interest. That is, their utility function

is non-decreasing with respect to the quantity. Clearly, this is not always the case. For

example, travelers usually prefer shorter travel times to longer ones. In other words,

travel time is considered as disutility instead of utility. When random variables are

associated with disutility, the stochastic dominance has to be re-defined as follows.

Definition 3.2 (FSD by disutility �1) A random variable X dominates another random vari-

able Y in the first order by disutility, denoted as X �1 Y, if FX(t) ≥ FY(t), ∀t and at least one

strict inequality.

Theorem 3.1 still holds in Definition 3.2, yet the utility functions now have to be non-

increasing instead of non-decreasing.

We are now ready to compare two paths, whose disutility is measured by its travel

time, using the dominance relationship.

Definition 3.3 (Path dominance) Let πrs
k and πrs

l be the random travel times on path krs and

lrs respectively. If πrs
k �1 πrs

l then path krs is said to dominate path lrs in the first order.

CCITT 12
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Definition 3.4 (FSD-admissible paths) A path krs is FSD-admissible if there ∃ no path in Krs

that can dominate path krs in the first order, where Krs is the set of all paths between node r and

node s.

Denote Γrs
1 as the set of the FSD-admissible paths from node r to destination s. FSD-

admissible paths are also called as non-dominant paths in the literature (Miller-Hooks

1997, Miller-Hooks & Mahmassani 1998, Miller-Hooks & Mahmassani 2003, Nie & Wu

2009b).

Further we have the following definition.

Definition 3.5 (Pareto-optimal paths) An FSD-admissible path k̄rs is said to be Pareto-optimal

path, if for at least one time budget b no other path can provide a higher on-time arrival probability.

Introduce

urs(b) = max
∀krs∈Γrs

1

{
urs

k (b)
}

(3.1)

as the Pareto frontier. That is, if a path krs is Pareto-optimal, then k
rs

= argmax[urs
k (b), ∀krs ∈

Krs] at b. Given a time budget b, path k
rs

ensures the highest on-time arrival probability

among all paths from node r to node s.

The above analysis employs the cumulative density function urs
k (·) which gives an

on-time arrival probability α based on a specific travel time budget b. Conversely, we

can define the optimality with a given on-time arrival probability. Denote vrs
k (·) as the

inverse function of urs
k (·), and an alternative Pareto frontier and the Pareto-optimal path

k
rs

are respectively defined as

vrs(α) = min
∀krs∈Γrs

1

{
vis

k (α)
}

(3.2)

k̄rs = argmin
[
vrs

k (α), ∀krs ∈ Krs
]

(3.3)

According to Equations (3.2) and (3.3), the optimal solution to the RASP problem is the

minimum time budget and the associated path, corresponding to a given probability.

The following proposition is obvious, given urs
k (vrs

k (α)) = α, ∀α, ∀krs ∈ Krs, ∀rs.

Proposition 3.1 If a path k̄rs is Pareto-optimal, and k̄rs = argmin
[
vrs

k (α0), ∀krs ∈ Krs
]
, then

∃b0 such that urs
k̄ (b0) = urs(b0) = α0. On the other hand, k̄rs = argmax

[
urs(b0)

]
, and

vrs
k̄ (α0) = vrs(α0) = b0.
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Proposition 3.1 means if a path gives the highest on-time arrival probability for a time

budget, it implies that the travel time budget is minimum for that on-time arrival prob-

ability.

Proposition 3.2 An FSD-admissible path is not necessarily Pareto-optimal.

Figure 3.1 shows the cumulative density functions urs
k (·), k = 1, 2, 3 for three paths and

the Pareto frontier urs. Given there are only three paths between OD pair rs, it shows

that path 3 is an FSD-admissible path because no path can dominate it in the first order.

However, urs
3 (·) (solid line) does not contribute to the Pareto frontier. Therefore path 3 is

not a Pareto-optimal path.

Figure 3.1: An FSD-admissible path that is not Pareto-optimal

We now discuss two important properties of FSD-admissible paths. Before that, we

note that uis
k (b) (the CDF of random path travel time πrs

k ) can be recursively calculated

by

uis
k (b) =

∫ b

0
ujs

k (b − w)pij(w)dw (3.4)

if the distribution of link traversal time is continuous and independent (Frank 1969).

Proposition 3.3 Subpaths of FSD-admissible paths must also be FSD-admissible paths.

Proof: Let kis ∈ Γis
1 . Suppose one of its subpath of kjs (kis = kjs � ij) is not FSD or

SSD-admissible, then there must exist a path l js such that l js �1 kjs. Recalling

uis
l (b) =

∫ b

0
ujs

l (b − w)pij(w)dw
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Therefore given l js �1 kjs, we have ujs
l (b) ≥ ujs

k (b), ∀b, then

uis
l (b) − uis

k (b) =
∫ b

0
[ujs

l (b − w) − ujs
k (b − w)]pij(w)dw ≥ 0, ∀b

Therefore it concludes that l is �1 kis . It contradicts with the assumption that kis is

FSD-admissible. �

Proposition 3.4 FSD-admissible paths must not contain any cycle.

Proof: Suppose, without loss of generality, that path krs and lrs are either FSD or SSD-

admissible. lrs contains one and only one cycle starting at node i, while krs is acyclic.

Then according Equation 3.4, assuming the cycle from node i to node i is reduced to a

link ĩi, uis
l is calculated as

uis
l =

∫ b

0
uis

k (b − w)pĩi(w)dw

Then we have uis
l (b) ≤

∫ b

0
uis

k (b)pĩi(w)dw = uis
k (b)

∫ b

0
pĩi(w)dw ≤ uis

k (b) ≤ uis
k (b), ∀b.

The first inequality is due to the monotonicity of CDF. The second inequality holds

because pĩi(·) is a probability density function,
∫ ∞

0
pĩi(w)dw = 1, and b < ∞, so∫ b

0
pĩi(w)dw < 1. Therefore, uis

k (b) ≥ uis
l (b), ∀b. It means that kis �1 lis (see Defini-

tion 3.3). Therefore lrs has no chance to be an FSD-admissible path. �

Using the result of Proposition 3.3, the RASP problem can be formulated as the fol-

lowing general dynamic programming program.

Find Γis
1 , ∀i such that Γis

1 = γ1�(kis = kjs � ij|kjs ∈ Γjs
1 , ∀ij ∈ A), ∀i �= s; Γss

1 = 0ss (3.5)

where kij � ij extends path kjs along link ij; γ1�(Krs) represents the operations which

retrieves SD-admissible paths from a path set Krs using Definition 3.2; 0ss is a dummy

path representing the boundary condition.

3.3 Solution techniques

Solving the RASP problem (3.5) involves two main operations: iteratively constructing

and storing admissible paths, and evaluating their travel time distributions. Central to

either operation is how to discretize the underlying problem. We shall first introduce the

basic algorithmic concept using a simple and easy-to-implement discretization scheme,

and then discuss more sophisticated approaches.
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3.3.1 Basic discretization scheme

Although the determination of stochastic dominance has to use a finite set of discrete

points on the CDF, the convolution integral (3.4 ) can be evaluated in the continuous

space. For instance, Fan et al. (2005a) suggest using Laplace Transformation to perform

a similar integral. Their method makes use of the fact that the Laplace Transformation

of a convolution equals the product of the individual transforms, that is

U(s) = F(s).G(s), F(s) =
∫ ∞

0
e−st f (t)dt, G(s) =

∫ ∞

0
e−stg(t)dt, U(s) =

∫ ∞

0
e−stu(t)dt

(3.6)

where

u(t) =
∫ t

0
f (t − w)g(w)dw

The evaluation of a convolution is divided into three steps. Firstly, both functions (in

Equation(3.4), they are uis
k (·) and pij(·)) are transformed and numerically integrated for a

set of discrete s. The second step calculates the convolution of the transformed functions

which turns out a point-to-point multiplication. Finally, the resulting function is reverted

back to the original domain. The last step involves solving a linear system U = Vu

in which U and u are vectors of U(s) and u(t) evaluated at discrete points s and t,

respectively, and V is a Vandermonde matrix. We did not adopt this method in this

research because the resulting Vandermonde matrix is usually ill-conditioned and the

inverse operation is therefore unstable.

Let B = Lφ be the largest travel time value in consideration, where φ is the length of

time unit. The time budget is treated in a discrete manner, i.e., b = 0, φ, 2φ, · · · , Lφ. For

any link ij, the probability mass function Pij(b) of cij may be obtained from its probability

density function pij(b) as follows:

Pij(b) =

⎧⎪⎨
⎪⎩

∫ b+φ
b pij(w)dw b = 0, φ, ..., (L − 1)φ∫ ∞
b pij(w)dw b = Lφ

0 otherwise
(3.7)

The above definition assumes that supporting points of any c ij must take a non-negative

multiple of φ. This assumption helps simplify the evaluation of convolution integral.

Also note that for any discrete b > Lφ, the probability mass is assumed to be zero. Then
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the convolution integral (see Equation (3.4)) is replaced with a finite sum as follows:

uis
k (b) =

b

∑
0

ujs
k (b − φ)Pij(φ), ∀b = 0, φ, · · · , Lφ (3.8)

If a continuous link distribution pij is discretized to Pij according to Equation (3.7),

and then uis
k is calculated from ujs

k and Pij following Equation (3.8), we call this discrete

approximation method as the ”b-discrete” method.

3.3.2 A label-correcting algorithm

We now describe a label correcting algorithm to search for all FSD-admissible paths.

The description is based on (Nie & Wu 2009b), although an earlier and slightly different

version has been studied in (Miller-Hooks 1997). The algorithm is named FSD-LC, with

FSD stands for first-order stochastic dominance, and LC stands for label-correcting. The

following definitions are used in the algorithm description: a list of candidate paths is

denoted using Q; ω(·) is a subpath operator used to track paths (e.g., ω(k is) = kjs such

that kis = kjs � ij); Ωis denotes a tentative set of FSD-admissible paths.

Algorithm FSD-LC

Step 0 Initialize. Set Q = ∅, uis(b) = 0, ∀b = 0, φ, .., Lφ, ∀i �= s, Ωis = ∅, ∀i. For the

destination node s, set uss(b) = 1, ∀b = 0, φ, ..., Lφ. Create a path from s to itself, 0ss

and set uss
0 (b) = 1, ∀b = 0, φ, ...Lφ. Let Q = Q ∪ {0ss}.

Step 1 Check optimality. if Q = ∅, terminate the procedure, the optimal solution is

found; otherwise proceed to Step 2.

Step 2 Take the first path kjs stored in Q and scan every incoming link ij of node j.

step 2.1 If all links ij have been scanned, go to Step 1; otherwise, take the next link

ij ∈ A.

step 2.2 Check whether path kjs has already traversed node i. If yes, go back to

step 2.1; otherwise, proceed to step 2.3.

step 2.3 Set l = |Γis
1 |+ 1, create a new path lis, calculate

uis
l (b) =

b

∑
h=0

ujs
k (b − h)Pij(h), ∀b = 0, φ, ..., Lφ (3.9)
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step 2.4 if Γis
1 = ∅, set Γis

1 = lis, uis(b) = uis
l (b), k̄is(b) = lis, ∀b = 0, φ, ..., Lφ. Update

σ(lis) = L + 1, ω(lis) = kjs;

otherwise, call Procedure FSD-CHECK. If l is is not FSD-admissible, go to step

2.1; otherwise, set ω(l is) = kjs and update Q = Q ∪ {l is}. Go to step 2.1.

Procedure FSD-CHECK

Inputs: a new path lis, a set of FSD-admissible paths Γis
1 , as well as the associated Pareto

frontier uis(·).

Return: a boolean value LR indicating whether or not l is is FSD-admissible, and updated

uis and Γis
1 .

Step 0 set LR = TRUE, set σ(l is) = 0, set Q′ = ∅ (Q′ is the set of paths that are currently

FSD-admissible but have a zero degree of strong dominance).

Step 1 Update Pareto frontier and identify Q.

for each b = 0, φ, ..., Lφ do

set kis = k̄is(b).

If uis
l (b) > uis(b)

update uis(b) = uis
l (b), k̄is(b) = lis, σ(lis) = σ(lis) + 1, σ(kis) = σ(kis) − 1

If σ(kis) = 0, set Q′ = Q′ ∪ {kis}.

end if

end for

Step 2 Update the set of FSD-admissible paths.

while LR = TRUE and Q′ is not empty, do

take path kis out of Q′, set nl = 0, ne = 0, ng = 0.

for b = 0, φ, ..., Lφ and if (nl = 0 or ng = 0) do

if uis
l (b) > uis

k (b), set ng = ng + 1; else if uis
l (b) = uis

k (b), ne = ne + 1; else,

nl = nl + 1.

CCITT 18



Formulation and Algorithm

end for

if nl = 0, set LR = FALSE; else if ng = 0, set Γis
1 = Γis

1 /{kis}.

end while

Step 3 If LR = TRUE, set Γ is
1 = Γis

1 ∪ {lis}. return LR.

The following remarks are in order.

Remark 1: While dealing with different problems, Algorithm FSD-LC is conceptually

similar to the EV algorithm of Miller-Hooks & Mahmassani (2000), in which a non-

dominance relationship is defined with respect to departure times instead of time bud-

gets. However, FSD-LC promises to reduce the amount of work required to carry out the

dominance check (although the strategy does not improve the worst-case scenario).

Remark 2: For each node i, Algorithm FSD-LC needs to store uis and k̄is - both are

vectors of length L + 1. Moveover, a vector uis
k (length L + 1) must be stored for each

path kis ∈ Γis
1 .

To examine the complexity of Algorithm FSD-LC, the following proposition is needed.

Proposition 3.5 In Algorithm FSD-LC, a scanned path will never reenter the candidate list Q.

Proof: Note that a path enters Q only at initialization (Step 0) or in step 2.4. In the latter

situation, the path is always newly generated in step 2.3, on top of existing set of FSD-

admissible paths Γis
1 . �

It follows from the lemma that Algorithm FSD-LC must terminate after finite steps since

the number of acyclic paths in a directed network is finite. This is formally stated as

below.

Theorem 3.2 Algorithm FSD-LC terminates after a finite number of steps and yields a set of

FSD-admissible paths Γis
1 for each node i.

Proof: the finite termination directly follows from Proposition 3.5. Upon the termination,

all acyclic paths between any node i �= s and s should have been examined since the

procedure essentially performs a breadth-first search. Through FSD-CHECK, only acyclic

paths that are not dominated will be kept in Γ is
1 at termination. Therefore the retained

paths form a final Γis
1 . �
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It is clear that the complexity of FSD-LC depends on the size of Γ is
1 . In theory |Γis

1 | is

only bounded by |Kis|, which grows exponentially with the number of nodes n (roughly

nn−1 in the worse case). Thus, no algorithm of polynomial complexity exists for the RASP

problem. We note that the RASP problem belongs to a class of multi-criteria shortest path

problems, which are known to be intractable (e.g. Hansen 1979, Henig 1985, Miller-Hooks

& Mahmassani 2000).

Proposition 3.6 Algorithm FSD-LC runs in a non-polynomial time O(mn2n−1L + mnnL2).

Proof: in the worst case, the algorithm may have to examine all possible paths for any

O-D pair is. There are roughly n × nn−1 = nn−1 paths in total. For each path, all links

may be scanned. Therefore Step 2 of the algorithm may be executed mnn time. In

step 2, O(n) operations are required to check the acyclicity and O(L2) operations are

required to calculate convolution integral. In FSD-CHECK, O(L) and O(nn−1L) opera-

tions are consumed in Step 1 and 2, respectively. Thus the complexity is in the order of

O(mnn(n + L2 + L + nn−1L)), which yields the above result ignoring the n + L portion in

the parenthesis. �

In practice, we expect that |Kis| is much smaller than nn−1, in particular for sparse

networks commonly seen in transportation applications. This has been noticed by a

number of authors in numerical experiments (see Brumbaugh-Smith & Shier 1989, Miller-

Hooks & Mahmassani 2000). Using the result of Henig (1985), one can show that the

expected number of FSD-admissible paths is bounded by ∑|Kis|
k=1

1
k � log(|Kis|) when L = 1

(i.e., two discrete time budgets). For L > 1, however, it is more difficult to establish such

a theoretical bound. Through numerical examples, Wu & Nie (2009) showed that the

relation between |Γis
1 | and n can be fitted using a quadratic function.

3.3.3 Discretize by probability

The discrete scheme proposed in the last section (Equation 3.8) requires O(L2) steps to

calculate urs
k (b). The size of L depends on both total travel time budget T and resolution

φ. Though φ can be set independent of network, T is not. Ideally, T should equal the

longest possible time to arrive at the destination from any origin. Essentially, this allows

all trips to be completed with a probability up to 1.0. For example, if the longest possible
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travel time is 6 hours and φ = 5 minutes, then L = 6 × 12 = 72. Unfortunately, obtaining

a good estimate of the maximum possible trip time itself is a hard problem for which

no polynomial algorithms seem to exist (see Miller-Hooks & Mahmassani (1998) for a

discussion of the least possible time path problem). To bypass this difficulty, one may

simply set T to be a very large number. However, this brute-force treatment will raise

computational issues as the complexity of the discrete algorithm highly depends on L.

In a nutshell, the b-discrete method is not desirable because it leads to problem-specific

complexity.

In the following, an alternative discretization method is proposed to overcome the

shortcoming of b-discrete. Instead of discretizing the analysis period [0, T], the new

method considers a set of discrete points in the space of cumulative probability, namely

α = ε, 2ε, · · · , 1.0, where Lε = 1.0. We shall call this method α-discrete in the follow-

ing. Corresponding to the α discrete points, a sequence of discrete travel times b ij
t are

generated for each link ij such that 0 = bij
0 < bij

1 < · · · < bij
t < · · · < bij

L and

bij
t = F−1

ij (tε), t = 1, · · · , L (3.10)

where F−1
ij (·) is the inverse CDF of cij. Equation (3.10) implies

∫ bij
t

bij
t−1

pij(w)dw = ε, t = 1, · · · , L, (3.11)

and with the Mean Value Theorem, we can always find b̂ij
t for each interval [bij

t−1, bij
t ] such

that

pij(b̂
ij
t )(bij

t − bij
t−1) = ε (3.12)

Thus, the probability mass function (PMF) in this discrete scheme is given by

Pij(b̂
ij
t ) = ε, t = 1, · · · , L (3.13)

Accordingly, the distribution of path travel time π is
k is represented by vis

k instead of uis
k .

Given vjs
k and F−1

ij , vis
k can be approximately calculated using the following alternative

convolution integral (ACI) procedure.

Procedure ACI
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Step 0 set η = 0. For t1 = 1, · · · L; for t2 = 1, · · · L: set η = η + 1, zη = vjs
k (t1ε) + b̂ij

t2
.

Step 1 Sort zη in an ascending order.

Step 2 Construct the inverse CDF using vis
k (tε) = ztL, t = 1, · · · L.

In step 0, L2 possible realizations of travel times are enumerated and stored in zη . In Step

1, sorting a vector of length L2 requires O(L2 log L) steps if a binary tree is implemented.

The last step consumes O(L) steps. Thus, the complexity of procedure is dominated by

the second step, which is higher than that of the discrete convolution (3.8) by a factor of

log(L).

Note that L in the α-discrete method does not depend on T. Thus, the tradeoff be-

tween accuracy and computational cost can be easily controlled by selecting an ε, with-

out considering network size and other problem-specific parameters that may impact T.

Consequently, although α-discrete is more time-consuming than b-discrete for the same

L, the extra computational overhead could be offset as α-discrete may lead to a smaller

L.

Wu & Nie (2009) showed that the α-discrete method is much more efficient for some

large network. For example it takes more than 2 hours to complete a single run using

the b-discrete method for a 50×50 grid network (2500 nodes, 9,800 links), while it only

takes less 1000 seconds using α-discrete method for the same network. Wu & Nie (2009)

also showed that the α-discrete method is a competitive alternative to the b-discrete

method. It not only make it possible to apply algorithm FSD-LC to large networks, but

also provides reasonable approximation with comparable computational expense. The

b-discrete method uses the uniformly spaced discrete points that are not effective in

representing heterogeneous probability mass concentration. Especially they frequently

overly represent the flat portions of a CDF. For example, numerical tests show that much

more SD-admissible paths are solved using the b-discrete method. Most of them are

non-dominated either in the interval [0.99, 1] or [0.01]. Because no support points in

these two intervals when using the α-discrete method (resolution of probability is 0.01),

these non-dominated paths are missed when using the α-discrete method. However,

these missed non-dominated paths are almost useless in practice: few travelers would be
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sensitive to an improvement of less than 1% on-time arrival reliability. More importantly,

less non-dominated paths (i.e., smaller |Γrs
1 |) help Algorithm FSD-LC run much faster.

3.3.4 A hybrid discretization approach

The b-discrete and α-discrete methods both employ the uniformly spaced discrete points.

In the b-discrete method, the travel time budget is uniformly discretized; while in the α-

discrete method, the probability mass is uniformly discretized. However, the uniformly

spaced discrete points are not effective in representing heterogenous probability mass

concentration. They frequently overly represent the flat portions, while at times fail to

capture the hot spots where rapid changes take place. In light of the above limitation,

this study adopts a hybrid approach to allow both variable length of discrete intervals

and different probability mass in each interval. The hybrid approach starts from a set

of L uniform intervals (whose length may vary from one random variable to another),

and computes the probability mass functions with Equation 3.7. However, a consolidation

procedure is incorporated to merge consecutive intervals together such that no more

than one interval has a probability mass smaller than 1/L. “Merging” two consecutive

discrete intervals means removing the boundary between them and assigning the sum

of their probability masses to the new interval. The consolidation produces a set of

effective support intervals (ESI), whose size is often much smaller than L according to our

experience. Consequently, the hybrid approach brings about significant computational

benefits, without compromising the accuracy and stability of numerical convolution.

We now show how the convolution can be performed using the hybrid discretization

scheme. Consider two random variables X and Y, whose domain is represented (af-

ter discretization and consolidation), respectively, by the following sets of break points:

[x0, x1, ..., xL(X)], [y0, y1, ..., yL(Y)], where L(X) and L(Y) are numbers of ESI. Accordingly,

the discrete support points are defined as

SX = [
x0 + x1

2
, · · · ,

xL(X)−1 + xL(X)

2
], SY = [

y0 + y1

2
, · · · ,

yL(Y)−1 + yL(Y)

2
],

and the probability mass functions are

PX = [PX
1 , · · · , PX

L(X)], PY = [PY
1 , · · · , PY

L(Y)].
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The following method can be used to compute PZ for Z = X ⊕ Y, where ⊕ denotes

convolution integral. Denote P0Z be the probability mass function before consolidation.

Convolution based on the hybrid discretization approach

Step 0 Set zmin = x0 + y0, zmax = xL(X) + YL(Y). Divide [zmin, zmax] into L intervals of

uniform length, and compute φ = (zmax − zmin)/L. Intialize P0Z
l = 0, ∀l = 1, · · · , L.

Step 1 for i = 1, 2, · · · , L(X),

for j = 1, 2, · · · , L(Y)

Calculate ts = SX
i + SY

j and tp = PX
i · PY

j . Define l =
[

ts − zmin

φ

]
−

, and set P0Z
l =

P0Z
l + tp

end for

end for

Step 2 Consolidate P0Z to get effective support intervals and the associated probability

mass functions.

The procedure of consolidation is given as follows.

Procedure: Consolidation

Inputs: P0Z from convolution and z = {z0, z1, · · · , zL}, where elements are evenly dis-

tributed from zmin to zmax with the step size [zmax − zmin]/L, and the desired prob-

ability resolution ε.

Outputs: SZ contains the effective support intervals and PZ contains the probability

mass corresponding to each element in SZ.

Step 0 Calculate two temporary vectors φ = {P0Z
1 − P0Z

0 , P0Z
2 − P0Z

1 , · · · , P0Z
L − P0Z

L−1}
and

ψ = {z0 + z1

2
,
z1 + z2

2
, · · · ,

zL−1 + zL

2
}, respectively. Travel time realization ψt cor-

responds to probability φt, t = 0, 1, · · · , L − 1.
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Step 1 Begin with t0 = 0, κ = 0. Let PZ
κ =

η

∑
t=t0

φt, where η < L,
η−1

∑
t=t0

φt < ε and
η

∑
t=t0

φt ≥ ε,

and SZ
κ =

η

∑
t=t0

ψt · φt. Then t0 = η, κ = κ + 1

Step 2 Repeat Step 2 until η = L. Let Lij = κ.

Finally, we note that the determination of FSD-admissibility relies on comparing

CDFs. In the hybrid discretization scheme, the CDF of any consolidated distribution can

be evaluated at any feasible point using linear interpolation. Thus, FSD-admissibility can

be examined at any desired resolution and is not restricted by the discrete points used to

represent distributions. The hybrid discretization scheme is employed in our case study.
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Chapter 4

Implementation and Graphic User
Interface

The algorithm described in the last chapter is implemented on the top of Toolkit of Net-

work Modeling (TNM), a C++ class library for solving various transportation network

problems. Thanks to the object-oriented design adopted in TNM, we are able to easily fit

new code into the existing class hierarchy, which has greatly reduced the programming

efforts.

4.1 Class Hierarchy

This section provides an overview of class hierarchy, with a focus on new classes in-

troduced in this research. A detailed class implementation can be found in Appendix

A.

Originally, TNM defines four major network classes:

• TNM SNET: for static applications such as traffic assignment.

• TNM DNET: for macroscopic dynamic applications such as dynamic network loading

and dynamic traffic assignment.

• TNM MNET: for microscopic dynamic applications, such as studying vehicles’ lane-

changing behavior.

• TNM ProbeNet: reserved for stochastic applications.
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Figure 4.1: A class hierarchy tree

All the four network classes are derived from TNM SNET, whose major data members

include, among others, lists of node and link which together represent the topology of

the network. Each type of network is usually associated with link and node objects of

corresponding types. For example, Class TNM SLINK is the basic link type for TNM SNET,

while Class TNM DLINK is used by TNM DNET. For a detailed description of these classes,

the reader is referred to (Nie 2006).

As shown in Figure 4.1, TNM ProbeNet is derived from TNM DNET. While this class

exists in the original TNM, it has been substantially expanded in this research to support

reliable routing. The important new functions include generating non-dominant paths,

I-O functions for travel time distributions, as well as build functions for new network

format.

In addition, new node and link classes are introduced. TNM PNODE, derived from

TNM DNODE, is used to construct, store, manipulate and compare paths. Most impor-

tant operations defined in Algorithm FSD-LC are actually implemented in this class.

TNM PRBLK and TNM GCMLINK are derived classes of TNM DLINK. No important methods are

defined in these classes. Instead, they are primarily holders of new data members, such

as detector information and road names.

TNM ProbDist is a new class intended to handle discrete probability distribution. In

addition to regular functionality, the class provides an efficient implementation of con-
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volution integral using the hybrid discretization scheme introduced in Chapter 3. It

also allows one to easily compare one distribution with another using stochastic domi-

nance. TNM ProbDist is further wrapped by class TNM PPATH, which implements connec-

tion among paths stored at adjacent nodes. Through this connection, one can construct

a path from its pointer at any given node. Finally, to be consistent with the existing

hierarchy, a new class TNM ProbPATH is derived from the existing path class TNM SPATH

and wraps TNM PPATH.

4.2 Graphic user interface

A graphic user interface (GUI), named CTR (Chicago Travel Reliability), was developed

using MFC and MYSQL. CTR offers a range of useful visualization functions intended to

provide an integrated environment to: 1) visualize and analyze traffic data, 2) construct

and display travel reliability measures for the Chicago network, and 3) provide reliable

route guidance and compare it with conventional routing algorithms.

Figures 4.2(a) and 4.2(b) show the CTR window before and after loading the Chicago

network (select file → start to load network from the default folder, or file →
start from if you would like to load the Chicago network from a different location).

After the network is loaded, right click on the map to zoom in/out or pan the current

view, as shown in Figure 4.2(b). The map functions can also be accessed through toolbar

or the dropdown menu. Double click on the map (or use Map→Setting) to modify map

settings.

Figures 4.3(a)-4.3(c) show four dropdown menus of CTR, which are briefly described

in the following.

• Control

Save Overwrite the loaded network file with current editing. Normally the user is

not expected to use this function.

Save Map View Save the portion of the network appeared in the current view

window as an independent network file. The user can load the saved network

file later. This function helps create smaller instances of the routing problem.
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(a) CTR window, before launching the network file

(b) CTR window, after launching the GCM network

Figure 4.2: CTR InterfaceCCITT 29
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(a) ”Control” menu (b) ”Map menu

(c) ”Tool” menu (d) ”View” menu

Figure 4.3: CTR main dropdown menus
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Figure 4.4: Database connection dialog

Database Connect to the mysql database. Most functions require to connect to

the database first, particularly those related to traffic data inquiries. Figure 4.4

shows the dialog window for database connection. To connect to the database,

select NUTranlab as server and click ”Connect”.

Detector→link Create a mapping between detectors and links. Normally the user

does not need this function.

• Map

Zoom in Zoom in the map (increase size).

Zoom out Zoom out the map (decrease size).

Zoom full Return to the full view of the network.

Loop detectors Show/hide loop detectors on the map.

IPASS detectors Show/hide IPASS detectors on the map.

• View

Map Switch map view pattern. The map has three patterns: normal view; speed

view, which colors each link with speed data read from database (useful when
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traffic data is displayed dynamically), density view, which colors each link

with occupancy data read from database (useful when traffic data is displayed

dynamically).

List of links Open a link view (see Figure 4.5(a)). Link view and map view are

linked together inherently. That is, when you click a link on the link view, the

map view will automatically zoom into the link and highlight it. This makes

it easier to locate a link on a map according to its ID (and other properties) or

vice versa.

List of loop detectors Open a loop detector view (see Figure 4.5(b)). Loop detector

view is linked to map view in a similar way as the link view. Double click on

a row in the loop detector view will pop out a data inquire window as shown

in Figure 4.6 (the mysql database has to be connected first). In this dialog,

the user can plot the distribution for the selected criteria (time of day, season

etc) and traffic quantity (speed, occupancy etc). The dialog can also plot the

relationship between speed, occupancy and flow rates (click on relation).

List of IPASS detectors Open an IPASS view (see Figure 4.5(c)). IPASS view is also

linked to map view and double click on a row of the view will bring the user

to the same data inquiry dialog as for loop detector view. The difference is

that the user cannot select traffic quantity (since travel time is the only possible

option) and the plot type (only distribution plots can be made).

• Tools

Detector data Provides a data inquiry tool (see Figure 4.7). The user can plot the

profiles of traffic quantities over time and compare them for different days

and detectors.

Replay Allow users to dynamically visualize traffic data on the map for a given

day by coloring links. This function can be called only when an active map

view exists in either speed or density pattern. Once the replay dialog is

activated, first select a day and data source (from detector, IPASS or both),

then click play to start the animation, see Figure 4.8). The user can drag the
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(a) Link View

(b) Loop detector view

(c) IPASS view

Figure 4.5: Different views available in CTR
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Figure 4.6: Distributions of traffic quantities

Figure 4.7: Traffic data inquiry
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Figure 4.8: Dynamic display of traffic quantities

button on the slide bar to any time of the day, or use F step (forward) and B

step (backward) to manually control time.

Shortest path Implements a conventional shortest path algorithm.

Log Display running information in a log window, such as warning or error mes-

sages which are otherwise invisible to the user.

Network compare Compare two networks’ topology, not intended for regular users.

Network match Match two networks’s topology, not intended for regular users.

Figure template A PGL graph editor. All plots produced by CTR are in PGL for-

mat and can be saved as a PGL file. The saved PGL files can be loaded and

edited using this function and exported to other formats such as jpeg, eps, etc.

Routing The core component in CTR that integrates functions related to reliable

routing. Note that the connection with the mysql database has to be built first

in order to properly run this function. The first step is to select the origin and

destination. This can be done directly in the panel by inputting the node IDs.

Alternatively, right click on the map, and select ”From here” or ”To here” for

origin or destination respectively (see Figure 4.9). The user can also specify the

time of day (AM Peak, PM Peak, etc) and day of week (weekday, weekend),
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which will determine the corresponding travel time distribution employed in

the reliable routing. The user can also select several algorithmic parameters,

such as FSD vs. SSD (second-order stochastic dominance), higher solution

quality vs. better computational performance and search density. The recom-

mended choice is FSD + Better + 10 (search density). Other choices should

be considered only when routing takes too long to accomplish. Also note

that a larger search density may significantly increase computational time and

increase the number of admissible paths. After all parameters are properly

set, click Go to solve the RASP problem. Admissible paths for the selected

O-D pair will appear in the window under the ”Go” button after the routing

operation is terminated (see Figure 4.10). The user can select one or more ad-

missible paths from the path and compare them (click compare button). The

compare function will generate a window that plots CDFs of travel times on

the selected paths (see Figure 4.11). The user can also move the slide bar to ad-

just the current on-time reliability. Whenever the on-time reliability is selected

on the bar, the corresponding minimum travel time budget will be displayed

in the text field window, and the optimal path will be highlighted in both the

path view window and on the map.
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Figure 4.9: CTR routing panel

Figure 4.10: Display of Routing results

CCITT 37



Implementation and Graphic User Interface

Figure 4.11: Compare routing results in CTR
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Chapter 5

The Case Study and Data

The Chicago region is selected for a case study to test reliable routing algorithms because

of two reasons. First, as the third largest metropolitan area in the US, the city of Chicago

and its neighboring suburban areas are subject to significant congestion. According to

the latest mobility report Schrank & Lomax (2007), an average commuter in Chicago area

wasted 46 hours due to traffic congestion in 2007. Perhaps more important, the travel

times in the Chicago area seem more unreliable than any other major metropolitan areas

in the US. The report indicates that a traveler in Chicago area has to budget 2.07 times of

the free flow travel time for an important trip (which requires 95% probability of on-time

arrival), the highest index in the country. Second, Chicago has archived a rich set of

traffic data in both public and private sectors. In particular, the GCM (Gary-Chicago-

Milwaukee corridor) traveler information system (www.gcmtravel.com) broadcasts and

archives real-time traffic data collected from loop detectors, toll transponders and other

devices operated by departments of transportation in Illinois, Wisconsin and Indiana.

Notably, this database provides (point-to-point) real-time travel time for most toll roads

in the region since 2004.

This research uses GCM database as the the primary source for traffic data on free-

ways and toll roads. The GCM data come from two main sources: loop detectors and

electronic toll transponders (IPASS), which cover freeways and toll roads respectively.

Figure 5.1 shows a topology of the Chicago network used in the case study, as well as

the location of loop detectors and IPASS toll booths. The network data are from the

latest travel planning model prepared by the Chicago Metropolitan Agency for Planning
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Filled   circles:  Loop detector
Unfilled circles:  Toll plaza 

Figure 5.1: The Chicago network from Chicago Metropolitan Agency for Planning
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(CMAP). We note that the GCM system provides its own network data. However, the

GCM network has two major drawbacks: it does not provide basic link properties such

as speed limit and capacity; and its links are short in order to depict fine geometric

features, which leads to unnecessarily large network representation so far as routing is

concerned. The CMAP network is adopted in light of these shortcomings.

As revealed in Figure 5.1, a major problem is the lack of data on arterial and local

streets, which constitute the majority of links in the network. Recognizing that this is

a universal problem that has not yet been overcome in the current paradigm of data

collection, we estimate travel time distributions on these streets using results from a

travel planning model.

5.1 Data for freeway and toll roads

In the GCM database, loop detectors (primarily operated by Illinois Department of Trans-

portation) record speed, occupancy and flow rate approximately every 5 minutes. Like-

wise, travel times on toll roads between two I-PASS toll booths (operated by Illinois Toll

Authority) are obtained from in-vehicle transponders, and subsequently aggregated and

written into database every 5 minutes. About 825 loop detectors and 174 I-PASS detectors

(each I-PASS detector corresponds to an origin-destination pair of toll booths) from GCM

database are used in this study (see Figure 5.1). GCM contains a larger number I-PASS

detectors, many of which have a bound outside of Illinois and therefore were excluded.

Malfunctioned detectors and those with duplicated identifications (in the original GCM

database, most detectors have two different IDs) were also excluded. In this research, the

loop detector data collected from 10/10/2004 to 10/11/2008, and the I-PASS detector

data from 10/9/2004 to 7/3/2008, are employed.

5.1.1 Raw data

Figure 5.3 shows the raw data reported at loop detector IL-TSC-EISENHOWER-E-3029

on July 2nd, 2007 (Monday), whose location in the CMAP network can be founded in Fig-

ure 5.2. The data suggest that the freeway section is subject to heavy congestion through-

out the day. The time-of-day profiles of speed and occupancy well match each other, with
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Figure 5.2: The location of loop detector IL-TSC-EISENHOWER-E-3029
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Figure 5.3: Speed and occupancy reported at loop detector IL-TSC-EISENHOWER-E-
3029 on 2007/07/02

lower speeds corresponding to higher occupancy, as one would expect. For further ver-

ification, Figure 5.4 reports the relationships between speed and occupancy and volume

and occupancy at detector IL-TSC-EISENHOWER-E-3029, only using morning peak pe-

riod data collected on weekdays in Spring (in total there are 11,460 data points). These

relationship are perfectly aligned with basic traffic flow theory, which predicts that 1)

speeds decrease rapidly as occupancy (density) grows beyond certain threshold (known

as critical density); 2) volume grows linearly with speed until it reaches the capacity near

the critical occupancy; and 3) the volume-occupancy relationship can be approximately

depicted by a triangle. Figure 5.5 illustrates the distribution of travel speeds at the same
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Figure 5.4: Relationships between traffic quantities reported at loop detector IL-TSC-
EISENHOWER-E-3029. Morning period (6-10 am), Weekday, Spring (months of March,
April and May)

loop detector. As shown, the speed has a strong peak around the free flow value (about

60 mph) but has a long and distinguished tail associated with rush hour congestion. The

average speed for that period is about 52 mph and the standard deviation is about 13

mph.

Figure 5.6 reports a sample of raw travel time data for an I-PASS detector (IL-TSC-

184), which covers a stretch of Eisenhower highway (from Halsted to East-West streets,

see Figure 5.7). The figure reveals two distinct rush hour periods, with a stronger evening

peak (with travel times almost tripped comparing with off-peak numbers). The empirical

distribution of travel time for the above I-PASS detector is plotted in Figure 5.8. In total,

these distributions are produced based on 8210 valid observations that were made during

morning periods on weekdays in Spring. Note that the shape of the probability density

function is similar to that of a Gamma distribution. The average travel time during the

morning period for that stretch of freeway is about 28 minutes, with a standard deviation

of 10 minutes.

5.1.2 Obtain link travel times

Ultimately, the underlying inputs to reliable routing are travel time distributions at link

level. To construct these distributions, travel times on a link for any of the 288 intervals
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Figure 5.5: Speed distribution at loop detector IL-TSC-EISENHOWER-E-3029. Morning
period (6-10 am), Weekday, Spring (months of March, April and May)

(12/hr × 24hr/day) in any day covered by the data collection period must be derived

from loop detector or I-PASS data.

We first need to establish a set of links that are “covered” by either I-PASS detector

or loop detector. To determine which link in the CMAP network is associated with

a loop detector, the coordinates (longitude and latitude) of the detector (available in

the GCM database) are used to find the closest freeway link. A computer program

was developed to automate the process, but manual corrections were often found to be

necessary. Finding the I-PASS covered links requires more work, which consists of two

major steps. In the first, the starting and ending points of the I-PASS detector are located

in the CMAP network. Similarly, this work requires some manual maneuvers after the

computer did the first cut. The second step identifies and marks all links used by the

fastest (not shortest) path connecting the two points. Thus, vehicles that pass two I-PASS

toll booths in sequence are assumed to always stay on the toll roads, which in most cases

constitute the fastest alternative. Note that a link in the CMAP network may be covered

by more than one loop detectors. In total, 765 out of 44331 links are covered in one way

or another, as shown in Figure 5.9.

For links covered by loop detector(s), the recorded speed in a 5-minute interval can

be used to estimate link travel time for the corresponding interval, i.e.,

τd
a (t) = la/vd

a(t) (5.1)
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Figure 5.6: Travel time reported for I-PASS detector IL-TSC-184 on 2007/07/02

Figure 5.7: The location of I-PASS detector IL-TSC-184
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Figure 5.8: Travel time distribution for I-PASS detector IL-TSC-184. Morning period (6-10
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Thick Blue (Loop detector)
Thin Red (I-PASS detector)

Figure 5.9: Covered links in the CMAP network (total covered links = 765)
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where τd
a (t) and vd

a(t) be travel time and speed on link a recorded by detector d for time

interval t, and la is the link length. If for an interval, a link contains more than one

recorded travel time, the arithmetic average of calculated travel time values is taken as

the nominal link travel time, that is,

τd
a (t) =

∑d∈D(a) la/vd
a(t)

|D(a)| (5.2)

where D(a) is the set of loop detectors associated with link a at a given time.

As for I-PASS detectors, we need to estimate link travel times on covered link based

on the recorded path travel times for a given time period. This is a difficult exercise for

two reasons. First, how the travel delays (if there is any) experienced on a path may be

spatially distributed is unknown. Second, an I-PASS record tagged by one time interval

might contribute link travel times at other time intervals 1. It is hard to solve either

problem unless further information is available, such as supplementary loop detector

data. For simplification, we assume that the path travel times are distributed to links

proportional to their lengths, that is

τi
a(t) =

la
∑a∈krs la

crs
k (t) (5.3)

where krs denotes the shortest path connecting nodes r (the starting node of the link

associated with the origin toll booth) and s (the ending node of the link associated with

the destination toll booth), and crs
k (t) is the recorded travel time on the path for time

interval t. While this simple treatment would certainly introduce errors, we note that the

magnitude of errors may be alleviated when multiple I-PASS records are available for

the same stretch of toll roads. Equation 5.3 also implies that the travel time on a path at

one time interval contributes to its covered links for the same interval. This shortcoming

is not as serious as it sounds, since eventually the travel time data will be aggregated on

a period that last several hours. That is to say, as long as the misplaced link travel times

do not go into a wrong period (which is certainly possible but is much less severe), they

will not seriously distort the aggregated distributions. To summarize, the travel time on

1Note that the time interval that identifers an I-PASS record must be tied to either the entry (origin) or
exit (designation), since the travel times between most I-PASS toll booths are longer than 5 minutes.
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link a at time t is given by

τa(t) =
{

τd
a (t) if loop data are available

τi
a(t) if I-PASS data are available

(5.4)

5.1.3 Construct distributions

Once link travel times are obtained, the empirical distributions can be constructed using

the following procedure.

Step 1 Find La = min{τa(t), ∀t ∈ Λ}, Ua = min{10la/v0
a , max{τa(t), ∀t}}, where Λ is a

set of valid time intervals, and v0
a is free flow speed (or speed limit) on link a.

Step 2 Divide [La, Ua] into M intervals, and let δa = (Ua − La)/M. Find the set Sm =

{τa(t)|∀t ∈ Λ, (m − 1)δa ≤ τa(t) < mδ}, ∀m = 1, ...., M

Step 3 Obtain the probability mass for each interval m using

Pm =
|Sm|
|Λ|

It is noted that link travel time distribution may be affected by various factors, such as

time-of-day and seasonal effects. Consequently, one should consider a different reliable

routing decision for rush hour and off-peak period. To address this issue, the travel

time data are disaggregated according to three key factors: time-of-day, day-of-week and

season. Specifically, each day is divided into four periods, namely, morning peak period

(6 am - 10 am), mid-of-day period (10 am - 15 pm), evening peak period (15 pm - 20 pm)

and off-peak period (20 pm - 6 am). Days in a week are first grouped into weekends and

weekdays. In addition, Friday, Saturday and Sunday are separated to form individual

groups because the travel patterns on these days are subject to large variances. Finally,

a year is grouped into Spring (months of 3, 4 and 5), Summer (months of 6, 7 and 8),

Fall (months of 9, 10, 11) and Winter (months of 12, 1, 2). For each of the three factor,

an additional group is added to address the case of no-segmentation. For instance, the

segmentation for time-of-day contains 5 instead of 4 groups: morning peak, mid-of-day,

evening peak, off-peak and whole-day (no segmentation for time-of-day). Therefore, in

total, there are 5 × 6 × 5 = 150 possible combinations. Accordingly, we generate 150

different distributions for all the 765 covered links and store them in a MYSQL database.
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Link 19185 on the eastbound of Eisenhower highway, covered by both IPASS and loop detector data
speed limit = 55 mph, lengh = 0.51 mile, capacity = 8000 veh/hour

Figure 5.10: Location of the sample link (ID = 19815)
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Figure 5.11: Comparison of link travel time distribution at different time-of-day periods
(Link 19815, Spring, Weekday)
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Figure 5.12: Comparison of link travel time distribution in different seasons (Link 19815,
Weekday, Evening peak)
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Figure 5.13: Comparison of link travel time distribution on weekdays and weekends
(Link 19815, Spring, Evening peak)

An example of generated link travel time distributions is given below. Figure 5.10

identifies the link in the CMAP network. A comparison of link travel time distributions

for the four periods is given in Figure 5.11. The results suggest that the most congested

period is the evening peak, followed by mid-of-day, morning peak and off-peak. Also,

the variance of the distributions increases as the road becomes more congested. For

example, the standard deviation for off-peak and evening peak is 0.1 and 0.4 minutes,

respectively.

Figure 5.12 compares the travel time distributions for the same link in different sea-

sons on weekday and during evening peak period. As shown, although the seasonal

effect does not affect distribution as strongly as time-of-day, it is not negligible. Interest-

ingly, the data suggest that the travel time variance in the summer is about 25% higher

than other season, which may be linked to construction work.

Finally, a comparison between weekdays and weekends for the same link is reported

in Figure 5.13. As expected, the results suggest that the road is subject to much higher

mean travel time and larger variances on weekdays.
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5.2 Data for arterial and local streets

No observations are available for arterial and local streets in the CMAP network. Conse-

quently, the travel time distributions on these links have to be estimated indirectly. The

estimation process involves two main steps: select an appropriate functional form, and

estimate mean and variance.

Travel time on freeways and arterial streets is known to closely follow a Gamma

distribution (e.g. Polus 1979). Figure 5.11 provides further confirmation. Gamma distri-

butions have also been adopted in various studies of stochastic routing problems (e.g.

Fan et al. 2005a, Nie & Wu 2009b). Therefore, this study adopts Gamma distribution to

describe the travel time distribution on arterial and local streets. The probability density

function of a Gamma distribution is

f (x) =
1

θκΓ(κ)
(x − μ)κ−1e−(x−μ)/θ; x ≥ μ, θ, κ ≥ 0 (5.5)

where θ is the scale parameter; κ is the shape parameter; μ is the location parameter; and Γ(·)
is the Gamma function which takes the following form

Γ(z) =
∫ ∞

0
tz−1e−tdt

Having selected the functional form, we proceed to show how to estimate the three

parameters required in a Gamma distribution. We first note that the mean and variance

of a Gamma distribution are κθ and κθ2, respectively. Thus, if we know mean (denoted

as u), variance (denoted as σ2) and μ, then κ and θ can be obtained by

θ =
σ2

u − μ
, κ = (

u − μ

σ
)2 (5.6)

The CMAP travel demand model (CMAP 2006) is used to estimate congested travel times

on arterial streets. Note that the planning model is designed to capture average traffic

conditions in the network for the designated time period on a typical weekday. The

CMAP travel demand model represents a classical four-step process of trip generation,

trip distribution, mode choice, and traffic assignment, with considerable modifications used

to enhance the distribution and mode choice procedures. The original CMAP model

divides a day into eight periods: off-peak (8 PM - 6 AM), pre-morning-peak (6-7 AM),
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morning-peak (7 - 9 AM), post-morning-peak (9-10 AM), mid-of-day (10 AM - 2 PM),

pre-evening-peak (2 - 4 PM), evening-peak (4 - 6 PM), and post-evening-peak (6 - 8 PM).

Note that in GCM data peak periods combine the pre and post periods defined in the

CMAP model. For simplification, the assignment results for the peak periods (morning

and evening) in the CMAP model are used to represent those from pre to post peak

periods. Specifically, each link obtains from the CMAP model a mean travel time for

each of the four predetermined GCM periods: morning peak, mid-of-day, evening peak

and off-peak.

To estimate the mean (u), variance (σ2) and the location parameter (μ) is less straight-

forward, since they are not readily available from the travel demand model. We postulate

that the mean and variance of travel times on a link are related to its free flow travel time

τ0 and the level of congestion ρ = τ − τ0, where τ is travel time from traffic assignment

(note that the subscript a is suppressed for simplicity). This relationship may be esti-

mated from freeway data using statistical models. The simplest linear regression model

reads

u = a1τ0 + b1ρ + c1 (5.7)

σ = a2τ0 + b2ζρ + c2 (5.8)

where a1, b1, c1, a2, b2 and c2 are coefficients to be estimated from linear regression. ζ is

a predetermined parameter to account for the fact that the existence of signal control

may increase variances. ζ = 1 if no signal exists on the link; otherwise ζ is taken from

a uniform distribution between [1.1, 1.3]. For all 765 links covered by GCM data, u and

σ can be obtained from the empirical distribution and ρ is known from the CMAP travel

demand model. Thus, a linear regression can be performed to determine the coefficients,

which in turn are employed to estimate u and σ for arterial streets. We note that a linear

model is needed for each of the four time-of-day periods.

A similar linear model can be constructed to estimate the location parameter μ, which

delineates the smallest possible travel time on a link. We note that μ is likely to be smaller

than τ0 because motorists may drive well beyond the speed limit or the nominal ”free-

flow travel speed”. Moreover, it seems reasonable to assume that the level of congestion
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Table 5.1: Results of the linear regression for the mean-variance model (Equations 5.7-5.8)
and the location model (Equation 5.9)

time-of-day Variance Model Mean Model Location Model
periods a1 b1 c1 R2 a2 b2 c2 R2 a b R2

AM PEAK 0.309 0.870 0.580 0.444 1.127 0.546 -2.056 0.910 0.843 -4.106 0.958
PM PEAK 0.368 0.685 2.967 0.400 1.143 0.563 0.336 0.872 0.860 -3.533 0.964
MIDDAY 0.283 1.076 2.040 0.346 1.100 0.630 -1.145 0.889 0.857 -3.608 0.956

OFF PEAK 0.178 0 -1.031 0.516 1.043 0 -5.854 0.907 0.831 -5.257 0.937

does not affect μ. Thus, the linear model used to estimate μ is given by

μ = aτ0 + b (5.9)

The linear regression results for each of the four time-of-day periods are given in

Table 5.1. As shown, the mean model and the location model (Equation 5.9) fit the data

rather well (high R2). However, the fitness of the variance model is not impressive. We

tried, without much success, to introduce various forms of non-linearity into the model,

such as using the variance (σ2) instead of the standard deviation on the left hand side of

Equation (5.8), or consider (τ − τ0)2 on the right hand side. Apparently, the travel time

variances are affected by many other factors not included in the simple linear model.

We leave a more in-depth investigation of the variance model to the furture research.

Finally, we note that the coefficient of the congestion index is near zero in both mean

and variance models for off-peak period because congestion is negligible in that period.

Figure 5.14 reports distributions on a sample link (ID=18548, located on the northbound

Columbus Dr. in the Chicago downtown). The results show that the street is slightly

more congested during the mid-of-day and evening peak periods.
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Figure 5.14: Comparison of distributions of link travel time at different time-of-day peri-
ods (Link 18548)
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Chapter 6

Numerical Experiments

Numerical experiments are presented in this section to show the usefulness of reliable

route guidance and the feasibility of the existing algorithm in solving the real-size prob-

lems. For the first, we consider several real-world routing examples. The algorithm

FSD-LC was coded using MS-C++ and tested on a Windows XP x64 Workstation with

two Xenon 3.0GHz CPUs and 8GB RAM.

6.1 From Chicago downtown to O’hare international airport (ORD)

In this experiment, the intersection of Wabash St. and Washington St. is selected to

represent the Chicago downtown, and the airport is represented by the end of I-190, the

highway that serves the terminals. The most obvious choice for this routing problem,

which is also suggested by both Google Map and Yahoo Maps, is to use freeway I-

90/94 and I-90. Our results agree with this popular routing policy in general but have

interesting discrepancies. For the mid-of-day period, most FSD-admissible paths always

heavily use I-90 and I-90/94, and the differences between these paths are trivial, see

Figure 6.1.

For the morning peak period, however, the reliable route guidance suggests that

motorists should avoid I-90/94 and use an arterial street (N. Milwaukee Ave.) instead,

if they wish to have an on-time arrival probability higher than 44% (to airport) or 62%

(from airport) on-time arrival probability. To arrive at the airport with 95% probability,

for example, the path in Figure 6.2(a) requires a time budget of 33 minuets 57 seconds

while the path mostly using I-90 and I-90/94 needs 37 minutes and 18 seconds. The
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reliable route guidance thus leads to a 10% saving in travel budget. In the evening peak

of weekdays, motorists who drive from the airport to the city are recommended to avoid

I-90 until they pass the diverge of I-90 and I-94 (see Figure 6.3(a)). For 95% on-time

arrival probability, the path in Figure 6.3(a) requires a time budget of 34 minutes and

30 seconds, while the path in Figure 6.3(b) needs 39 minutes and 38 seconds. In both

periods, our results suggest that avoiding the entire or part of the popular freeways will

help motorists budget less time for better reliability.

We note that the path given in Figure 6.3(b) is actually the best for 50% on-time

arrival probability (i.e. the average performance). At this probability, a motorisit using

the path only need to budget 34 minutes 17 seconds for travel. As a comparison, the more

reliable path in Figure 6.3(a) needs a slightly higher budget (34 minutes 34 seconds) for

50% probability.

Figure 6.4 reports the CDFs of travel times on the FSD-admissible paths. Note that

the CDFs during the mid-of-day period are very close to each other. A close look reveals

that all these admissible paths heavily use I-90/94 and I-90, with negligible topological

differences. On the other hands, the CDFs for the morning and evening peak periods are

quite different, which are related to the substantial topological difference of the admissi-

ble paths.

6.1.1 From the west suburbs to Chicago downtown

This experiment considers the routing problems from the west suburbs to Chicago down-

town as well as the reverse direction. The purpose of the experiment is to test the reliabil-

ity of I-290, a popular route from the west suburb to Chicago downtown. The intersection

of Michigan Ave. and Randolph Dr. is selected to represent the downtown, and the in-

tersection of W. 31st St. and N. Brainard Ave. is selected to represent the west suburbs.

A popular choice for this routing problem is to go north along N. La Grange Rd (the

nearest entrance to I-290) and then to drive 13 miles along I-290 East to the downtown,

as shown in Figure 6.5(a). This path is also suggested by both Google and Yahoo Maps.

However, our experiments show that this path turns out to be too risky. For example,

it is shortest only for on-time arrival probability no higher than 7% in the mid-of-day
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(a) Typical path from downtown to ORD

(b) Typical path from ORD to downtown

Figure 6.1: FSD-admissible paths between Chicago downtown and ORD during the mid-
of-day period of weekdays
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(a) from downtown to ORD

(b) from ORD to downtown

Figure 6.2: Shortest paths between Chicago downtown and ORD ) during the morning
peak of weekdays (desired on-time arrival probability = 95%)
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(a) 95% on-time arrival probability

(b) 50% on-time arrival probability

Figure 6.3: Shortest paths from ORD to Chicago downtown during the evening peak of
weekdays
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Figure 6.4: Cumulative density functions (CDFs) of travel times on the FSD-admissible
paths for trips from Chicago downtown to ORD during different time periods
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period, and it is even not FSD-admissible in the morning and evening peak period. For

the morning peak period, motorists are suggested to use arterial streets (N. La Grange

Rd., W. Cermak Rd, S. Hartlem Ave., Roosevelt Rd and S. Central Ave.) and then to enter

I-290 East through S. Central Ave., as shown in Figure 6.5(b), if they needs an on-time

arrival probability higher than 73%. The driving distance on I-290 East is only around 7

miles: almost half of this path is made up of arterial and local streets. Moreover, Figures

6.5(b)-6.5(d) show that the motorists should enter I-290 East later if they prefer a higher

on-time arrival probability in weekdays. For example, if following the path in Figure

6.5(c), motorists enter I-290 East 4 miles earlier than following the path in Figure 6.5(b),

but it causes 5% more in travel time if they want to arrive at the destination with 95%

on-time arrival probability, for the morning peak period.

Now consider the reverse direction: from Chicago downtown to the west suburbs.

Both Google and Yahoo maps suggest using I-290 West until reaching Exit 17B (N. La

Grange Rd.), as shown in Figure 6.6(a). This path, however, is also risky in weekdays,

especially for the morning and evening peak periods. It is shortest only when the on-

time arrival probability is no higher than 38% (morning peak) or 34% (evening peak).

The reliable route guidance suggests motorists avoiding I-290 largely if they prefer a

high on-time arrival probability. For example, as shown in Figure 6.6(b), motorists are

told to leave I-200 West at Exit 27A (S. Homan Ave.) instead of Exit 17B (N. La Grange

Rd.) for the morning peak period. It means that the driving distance on I-290 West is

only 4 miles rather than 13 miles, but it leads 12% saving in travel time under 95% on-

time arrival probability. For the evening peak period, motorists are suggested to leave

I-290 West even earlier at Exit 28B, around 2 miles ahead of Exit 27A, so that the travel

time can be saved 14% under 95% on-time arrival probability. Figure 6.6(c) shows that

a detour on I-55 South can even save time than driving on I-290 West for the morning

peak period. For 95% on-time arrival probability, the path in Figure 6.6(c) requires a time

budget of 33 minutes and 35 seconds, but the path in Figure 6.6(a) requires 36 minutes

11 seconds. The latter travel time is 8% more than the former. Therefore, the experiments

indicate that both directions of I-290 are congested during the peak time periods.

Figure 6.1.1 reports the CDFs of travel time on the FSD-admissible paths for trips
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(a)

(b)

(c)

(d)

Figure 6.5: Shortest paths from the west suburbs to Chicago downtown
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(a)

(b)

(c)

(d)

Figure 6.6: Shortest paths from Chicago downtown to the west suburbs
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Figure 6.7: Cumulative density functions (CDFs) of travel time on the FSD-admissible
paths for trips from Chicago downtown to the west suburbs for the morning, mid-of-day
and evening peak periods of weekdays

from Chicago downtown to the west suburbs for the morning, mid-of-day and evening

peak periods. It is seen that the CDF of travel time along the path in Figure 6.6(a)

for three peak periods dominates other(s), only when the on-time arrival probability is

low. However, it is dominated by other(s) when the on-time arrival probability becomes

higher. It reflects the risk of this path.

6.1.2 From the southwest suburbs to Chicago downtown

The above experiments show that a detour on I-55 is even more reliable than using I-290

for the morning peak period (see Figure 6.6(c)). It implies that I-55 is less congested than

I-290. I-55 is a popular route connecting the southwest suburbs with Chicago downtown.

Experiments are also conducted to test the reliability of I-55. The intersection of Michigan

Ave. and Randolph Dr. is still selected to represent the downtown, and the intersection

of E. 67th St. and S. Cicero Ave. is selected to represent the southwest suburbs.

Google and Yahoo Maps suggest motorists using S. Cicero Ave, and then entering

I-55 North at Exit 286, and finally using Lake Shore Dr to downtown, as shown in Fig-

ure 6.8(a). Experiments show that this path is always shortest for the mid-of-day and

evening peak periods for any on-time arrival probability. For the morning peak period,

the shortest path is only different in the downtown area, as shown in the left top corner

in Figure 6.8(a): motorists are suggested to leave I-55 North at Exit 293A and then to

drive along S. Clark St to the destination.
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(a) (b)

(c) (d)

Figure 6.8: Shortest paths from from southwest suburbs to Chicago downtown or in the
reverse direction
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If driving in the reverse direction, i.e, from Chicago downtown to the southwest

suburbs, the typical path suggested by Google and Yahoo Maps is still the same to the

path shown in Figure 6.8(a) but in the reverse direction. The reliable route guidance

shows that it is always shortest for the morning peak period, for any on-time arrival

probability. However, this path becomes risky for the mid-of-day and evening peak

periods. It is shortest only when the on-time arrival probability is no higher than 49%

(mid-of-day) or 17% (evening peak). For these two periods, motorists are suggested to

avoid using I-55 entirely if they prefer a high on-time arrival probability: ≥ 77% for mid-

of-day period, and ≥ 48% for the evening peak period, as shown in Figure 6.8(d) and

6.8(b). For example, according to the reliable route guidance, motorists should use I-290

West first, then use arterial streets (S. Western Ave., S Archer Ave.) before they reach

S. Cicero Ave (see Figure 6.8(d)), for the mid-of-day period. For 95% on-time arrival

probability, this path requires a time budget of only 25 minutes and 2 seconds, while the

path suggested by Google and Yahoo maps (see in Figure 6.8(a), the reverse direction)

requires 30 minutes and 35 seconds. This routing policy leads a 21% saving in travel

time. For the evening peak period, motorist are suggested using arterial streets all the

time, as shown in Figure 6.8(b), and the required travel time is 27 minutes and 8 seconds.

Compared with the path in Figure 6.8(a) (the reverse direction) that needs 36 minutes

and 4 seconds, the routing policy leads a 33% saving of travel time! Therefore, our

experiments indicate that I-55 South is more congested for the mid-of-day and evening

periods than for the morning peak period. On the other hand, I-55 North is always

reliable all the time.

Figure 6.1.2 reports the CDFs of travel time on the FSD-admissible paths for trips

from Chicago downtown to the southwest suburbs for three periods. The figures on the

left and right demonstrate well the reason why using the paths in Figure 6.8(b) and 6.8(d)

can save a lot of time, compared with the path in Figure 6.8(a) (the reverse direction), for

a 95% on-time arrival probability. However, for the morning peak periods, there is only

one FSD-admissible path, as shown in the middle one.
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Figure 6.9: Cumulative density functions (CDFs) of travel time on the FSD-admissible
paths for trips from Chicago downtown to the southwest suburbs for three periods

(a) (b) (c) (d) (e)

Figure 6.10: Shortest paths from northshore to south suburbs or in the reverse direction

6.2 From the northshore to south suburbs

The challenge of this routing problem (see Figure 5.1) is how to travel through the

Chicago downtown and its congested peripheral area. Typically, motorists have two

options: I-90/94 and Lake Shore Dr. The origin and the destination are deliberately

selected so that both options could become attractive. Specifically, the intersection of Illi-

nois Rd. and Locust Rd. on the northshore, and the intersection of E.79 St. and S Martin

Luther King Dr. in the south suburbs are selected. The reliable route guidance generally

suggests that for weekdays motorists should stay away from I-90/94, especially for the

portion north of Chicago downtown if driving from north to south. Our results indicate
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that the popular choice shown in Figure 6.10(a) is shortest only when the on-time arrival

probability is very low (6% for morning peak, and 18% for mid-of-day). For the evening

peak, this path is not even FSD-admissible. For the mid-of-day and the evening peak

periods, Lake Shore Dr. is more reliable. Figure 6.10(d) shows that the shortest path dur-

ing the mid-of-day period uses the Lake Shore Dr, which guarantees an on-time arrival

probability higher than 43%. The FSD-admissible paths for the evening peak are similar

and not reported separately. For the morning peak, however, Lake Shore Dr. is preferred

only if a motorist wants to arrive on time with a probability lower than or equal to 59%

(see Figure 6.10(c)). For higher reliability motorists need to use various arterial streets

until they are close to downtown, and then switch I-90/94 (see Figures 6.10(b)).

Driving from south to north during weekdays is a different story. Experiments show

that the path in Figure 6.10(a) (reverse direction) represents most of FSD-admissible path

with the exception of the morning peak. For that period, Lake Shore Dr. is always

recommended and any path using I-90/94 is not FSD-admissible.

6.3 Computational performance

Table 6.1 reports the consumed CPU times for solving each of the four routing problems

in either direction and in both weekends and weekdays 1. As shown, the RASP problem

was solved within 30 seconds in most cases. Considering the complexity of the problem

and the sheer size of the network, the performance is acceptable even from a practical

point of view. Note that our algorithm actually finds FSD-admissible paths from all

origins to the destination simultaneously. Therefore, once the computation is done for

one O-D pair, little further efforts are needed to obtain admissible paths from another

origin to the same destination. It may be possible to expedite the computation if the

route guidance is only needed for one O-D pair. This possibility, however, is not further

explored in the current implementation.

Table 6.1 reveals that solving the weekend models generally took shorter CPU times

and generated fewer admissible paths. We conjecture that this is because the roads are

less congested on weekends, and therefore subject to smaller travel time variances. Par-

1In fact, the same travel time distributions are used on arterial streets for both weekends and weekdays.
Covered links, however, have different distributions on weekends and weekdays from observations.
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Table 6.1: Computation performance of the algorithm in the two routing problems

Weekdays Weekends
AM Peak Mid-of-day PM Peak AM Peak Mid-of-day PM Peak

Downtown to ORD
CPU time 29.58 18.69 16.58 12.25 19.14 8.50

# paths 7 5 4 1 5 1
ORD to downtown
CPU time 29.58 23.70 14.58 15.69 15.36 28.02

# paths 6 2 2 1 2 4
West suburbs to downtown
CPU time 108.03 29.30 26.66 15.86 30.23 15.42

# paths 5 3 2 1 3 4
Downtown to west suburbs
CPU time 55.72 21.84 32.39 13.27 11.22 9.42

# paths 13 3 11 2 2 1
Southwest suburbs to downtown
CPU time 105.41 27.45 27.28 15.81 19.33 15.52

# paths 1 1 1 1 2 1
Downtown to southwest suburbs
CPU time 71.25 66.05 88.17 14.39 33.59 21.09

# paths 1 3 4 1 1 1
Northshore to south suburbs
CPU time 65.88 74.39 20.42 15.52 46.53 33.74

# paths 7 10 2 2 1 4
South suburbs to northshore
CPU time 60.83 39.00 33.74 14.19 36.25 12.08

# paths 10 6 6 1 3 1

Note: 1) CPU time is measured in seconds; 2) ”# paths” stands for the number of FSD-admissible
paths
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Figure 6.11: Impacts of variances on arterial streets on computational performance.

ticularly, the morning and evening periods on weekends often have only one admissible

path; the most obvious choice (i.e. major freeways) usually prevails in those cases.

In order to better understand the impacts of travel time variances, a sensitivity anal-

ysis is conducted in the following. The focus is given to the variances on arterial streets,

since the linear regression model used to estimate them was not fitted very well. In

the analysis, we simply multiply the estimated variances on arterial by a parameter

λ = 0.5, 1.0, 1.5, 2.0, 2.5, and 3.0. For each value of λ (called a scenario), five different

locations in the CMAP network are selected to compute the all-to-one reliable shortest

paths. Three performance indexes are recorded for each run: the CPU time, the average

and maximum number of FSD-admissible paths at all nodes. The average of the five

runs (each for one destination) are used as the average index for the scenario. Figure

6.11 shows how these average indexes vary with the value of λ. Clearly, as the variances

increase, the average size of FSD-admissible paths grows. As a consequence, it takes

the algorithm longer to solve the problem; note that the complexity of the algorithm de-

pends on the size of FSD-admissible paths (Nie & Wu 2009b). The good news is that the

CPU time does not seem to increase superlinearly with the variances. In fact, the CPU

time barely doubled when the variances on arterial streets become six time higher. The

longest average CPU times is still less than one minute, which remains acceptable for

practical purposes.
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6.4 Summary

To summarize, our experiments indicate that best paths do vary substantially with the

reliability requirement, measured in this report by the probability of arriving on-time

or earlier. For motorists who travel during rush hours and seek high reliability, reliable

route guidance could generate up to 10 - 30 % of travel time savings. Interestingly,

highly reliable routes often tend to prefer major arterial to freeways and highways in

rush hours. This phenomenon could well have been caused by the underestimation

of travel time variances on arterial streets, recalling that the distributions on arterial

streets were estimated using linear models calibrated from freeway data, which were not

fitted very well for the variances. Nevertheless, staying away from congested freeways

during rush hours, particularly when you have important appointments, does agree with

conventional wisdom. Such advice appeals to many motorists probably because freeways

are less amenable to effective recourses when uncertainty strikes. The results from our

case study may have provided a piece of empirical evidence to support this perception.
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Conclusions

Travel time reliability is important to highway users. Personal and business travelers

value reliability because it allows them to make better use of their own time. Ship-

pers and freight carriers require predictable travel times to remain competitive. The

lack of travel reliability forces motorists to choose between running the risk of being

late (therefore missing important appointments or just-in-time deliveries) or budgeting

a large buffer time, much of which is often wasted. In order to hedge against such

uncertainty, highway users badly need decision-supporting tools that are capable of ex-

ploiting existing data sources to 1) reveal and document random pattern of travel times

of highway networks and 2) provide real-time route guidance that takes uncertainty into

consideration. This project confronts the above challenge by implementing a reliable a

prior shortest path (RASP) algorithm in a software tool named Chicago Travel Reliability

(CTR), and test it using real traffic data from the Chicago area. We first summarize what

have been accomplished in this project, and then discuss possible direction for further

research.

7.1 Main results

First, GIS and traffic database in the Gary-Chicago-Milwaukee (GCM) traveler informa-

tion system were processed and analyzed. GIS data from the GCM system were first

merged with another data set obtained from Chicago Metropolitan Agency for Planning

(CMAP), which provides important static road properties missed from GCM data (such

as capacity and free flow speed). Tools were developed to automate the merge of the two
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GIS data sources, which involves coordinate conversion and position matching. GCM

traffic data include two parts: loop detector data (speed, volume and occupancy), and

IPASS transponder data (travel time between toll booths). In the Chicago area, the system

has 827 loop detectors and 309 IPASS OD pairs and has operated since October of 2004.

In total, there are approximately 500 million records in the traffic database. A Windows

console application named GCM-Gateway was developed to download these traffic data

and convert them (stored in Postgresql format) into a MYSQL database on a workstation

at Northwestern University.

Second, a RASP algorithm was implemented using Visual C++ and tested on the

Chicago network. Our experiments indicate that best paths do vary substantially with

the reliability requirement, measured in this report by the probability of arriving on-

time or earlier. For motorists who travel during rush hours and seek high reliability,

reliable route guidance could generate up to 10 - 30 % of travel time savings comparing

to the conventional routing mode. This significant benefit could well justify the extra

efforts to generate reliable guidance. The study also verifies the capability of existing

algorithms in solving large-scale reliable routing problems within reasonable amount

of time. As noted, in most cases the algorithm found all-to-one reliable paths (FSD-

admissible paths) within a minute on an up-to-date workstation. Considering the non-

deterministic polynomial complexity of the problem and the sheer size of the network,

the reported performance is deemed satisfactory.

Thirdly, a software tool named Chicago Travel Reliability (CTR) was developed,

which provides an integrated environment to: 1) visualize and analyze traffic data, 2)

construct and display travel reliability measures for the Chicago network, and 3) pro-

vide reliable route guidance and compare it with conventional routing algorithms. CTR

is currently available upon email request (y-nie@norhtwestern.edu) and will be posted

on-line soon.

7.2 Future Work

As the first phase of a contiual effort, this project is focused mainly on the demonstration

of reliable routing through the dissemination of CTR. It is the first of our four-step imple-
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mentation strategy which consists of demonstration, initial deployment, market analysis

and response and full deployment (commercialization). Presently, CTR has a number of

technical limitations that restrict its ability to sufficiently support further deployment.

First of all, the current project has focused on GCM system whose loop detector and

I-PASS transponder data cover only interstate highways and expressways. Since these

links constitute only a small portion of all network links, they might be inadequate for

accurate route guidance. The method used to deal with the lack of arterial data (detailed

in Chapter 5) is a compromise rather than a resolution. In order to obtain travel time

data on arterial streets, additional data sources should be exploited. One possibility that

the research team is exploring is to use automatic vehicle location (AVL) data archived

by Chicago Transit Authority (CTA). Since CTA bus routes cover most strategic arterial

streets in the City of Chicago and its neighboring suburban areas, the AVL data from

CTA holds promise in filling an important gap in GCM data currently used by CTR.

Secondly, to perform reliable route guidance in real-time (e.g., through an en-vehicle

navigation system), further improvements are still needed. Possible strategies include

but are not limited to: imposing higher-order stochastic dominance to reduce the number

of non-dominant paths; adopting approximation methods; and exploiting the special

properties of a one-to-one (instead of all-to-one) shortest path problem.

Finally, the current interface of CTR should be further enhanced. For example a

simpler and web-based version of CTR could attract more users and make it easier to

collect user feedback about the software.

The above limitations will be addressed in the next phase, which is currently funded

by CCITT for the year of 2009 - 2010.
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Appendix A

Class implementation

Implementation details of new and affected classes are reported here. Note that class

members and methods that are not related to the routing problem are mostly ignored.

Class TNM SNET Parent class: N/A

Data Members:

string networkName – name of the network.

int numOfNode – number of nodes in the network.

int numOfLink – number of links in the network.

int numOfOrigin – number of origin pairs.

int numOfOD – number of OD pairs.
vector<TNM SLINK*>

linkVector
– a vector storing link pointers.

vector<TNM SNODE*>
nodeVector

– a vector storing node pointers.

vector<TNM SORIGI*N>

originVector
– a vector storing origin pointers.

vector<TNM SNODE*>
destNodeVector

– a vector storing all destination.

SCANLIST* scanList – a scanlist object which determines how
shortest path algorithm is implemented.

int buildStatus – = 0 means network has not been build yet.

int initialStatus – = 0 means network has not been initiated
yet.

Constructor:

void TNM SNET(const string& netName) – a constructor, given the network

name.
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Return – none.

Operations:

int BuildFort(const TNM LINKTYPE tt) – load network from specific docu-

ments

Return – 0 if loading the network succeeds; a non-zero number
otherwise.

int CheckBuildStatus(bool noteBuilt) – check the network is built or not

Return – = 0 means network has not been build yet.

TNM SLINK* AllocateNewLink(const TNM LINKTYPE &pType) – Allocate mem-

ory to a new link according to the link type

Return – a TNM SLINK pointer

TNM SNODE* AllocateNewNode(const TNM NODETYPE &nType) – Allocate

memory to a new node according to the node type

Return – a TNM SNODE pointer

Class TNM DNET Parent class: TNM SNET

Data Members:

RoutingType routingType – fixed, mixed, variable default = fixed.

smallInt RTUpdateFreq – the update frequency of routing table.

largeInt assignHorizon – the largest assignment horizon through all
O-D pairs.

int numOfKSP – when generating an initial assignment
scheme, the number of K-shortest path.

floatType m demandLevel – indicate the demand level.

static smallInt unitTime – unit assignment time interval.

bool m releaseVehPerLoad – release vehicle per loading interval.

static smallInt flowScalar – how many ”vehicles” is needed to represent
one unit flow.

Constructor:

void TNM DNET(const string& netName) – a constructor, given the network

name.

Return – none.
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Class TNM ProbNet Parent class: TNM DNET

Data Members:

int numOfInterval – number of interval used for discretization
scheme.

bool m saveMemoryMode – false: using the vector that helps track paths,
improving efficiency but using more mem-
ory; otherwise true.

int m scannedNode – the number of nodes that are already
scanned.

int m tobeScannedNode – the number of nodes that are to be scanned.

Constructor:

void TNM ProbNet(const string& netName) – a constructor, given the network

name.

Return – none.

Operations:

int BuildFortProb(const TNM LINKTYPE tt, const TNM NODETYPE nt) – load

stochastic network, given the link and node types.

Return – 0 if loading the network succeeds; a non-zero number
otherwise.

int InitializeLinkProbability(int indicator) – initialize the distributions of link travel

times, given indicator 0 : AM peak hour, 1 : PM peak hour, 2 : middle of the

day, 3 : offpeak time

Return – 0 if initializing succeeds; a non-zero number other-
wise.

bool InitiPath(int sd, TNM PNODE* des) – initialize the path in the whole net-

work.

Return – 0 if initializing succeeds;; a non-zero number other-
wise.

TNM PNODE* ReadInDestination() – read the destination

Return – the pointer of the destination node

floatType SolveNonDominancePath(TNM PNODE* des, int sd, bool record, bool

EDA) – solve all FSD-admissible paths based on a destination node, given

specific solution conditions

Return – the cpu time.
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floatType* GenGammaDistribution(floatType mean, floatType variance, floatType

mu, floatType &minimum, floatType &maximum, CMatlabEng *matlab) – gen-

erate a Gamma distribution for link travel time, based on given parameters

Return – an array containing supporting points.

void WriteDistribution(CMatlabEng *matlab, int interval = 100) – write distribu-

tion into a specific file

Return – none

void GetLinkDistributionFromDisFile(TNM ProbDist &pDist, int stpID, int indicator=

0) – get the distribution of a given link and a given time period from files

Return – none.

vector<TNM ProbPath ∗ > GetPathAtNode(int NodeID) – get all FSD-admissible

path at a specific node, given the node id

Return – a vector containing FSD-admissible paths.

vector<TNM ProbPath ∗ > GetPathAtNode(TNM PNODE *node) – get all FSD-

admissible path at a specific node, given the node pointer

Return – a vector containing FSD-admissible paths.

TNM PPATH* GetOptimalPath(int NodeID, floatType prob) – get the optimal

path at a specific node and a specific on-time arrival probability, given a node

id

Return – the optimal path pointer.

TNM PPATH* GetOptimalPath(TNM PNODE *node, floatType prob) – get the

optimal path at a specific node and a specific on-time arrival probability, given

a node pointer

Return – the optimal path pointer.

int WriteDisFromBinaryDisFile(int indicator) – transfer the distribution in binary

document to text document

Return – 0 if succeeds; a non-zero number otherwise.

int PrintPerformance(double duration) – print out the performance to files

Return – 0 if succeeds; a non-zero number otherwise.
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void PrintOptimalAOTPolicy(floatType availableTime) – print out the optimal

path based on the given travel time budget

Return – none.

Overridables:

TNM SNODE* AllocateNewNode(const TNM NODETYPE &ntype) – Allocate mem-

ory to a new node according to the given node type

Return – a node pointer

TNM SLINK* AllocateNewLINK(const TNM LINKTYPE &pType) – Allocate mem-

ory to a new link according to the given link type

Return – a link pointer

Class TNM SNODE Parent class: N/A

Data Members:

int id – the node ID.

TNM NODETYPE type – node type.

largeInt xCord – x coordinate of the node.

largeInt yCord – y coordinate of the node.

vector<TNM SLINK∗ >
forwStar

– a vector containing the IDs of the links that
go out from this node.

vector<TNM SLINK∗ >

backStar
– a vector containing the IDs of the links that

point this node.
PATHELEM* pathElem – store the optimal routing policy, and nor-

mally this is reserved for shortest path tree
rooted at an origin.

PATHELEM* rPathElem – this is reserved for possible all-to-one short-
est path search.

int attachedOrg – how many origins are built on this node.

bool m isThrough – whether this node is traversed by a path or
not.

Constructor:

void TNM SNODE() – a default constructor

Return – none.
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Operations:

bool Initialize(const NODE VALCONTAINER &cont) – virtual function, used for

node initialization

Return – true

inline int id () – get the node id

Return – node id.

bool IsControlled() – whether this node is controlled or not

Return – true if controlled; false otherwise.

TNM SLINK* DestDummyAttached() – whether or not its outgoing link con-

tains a dummy destination

Return – the link pointer if the outgoing link contains a
dummy destination; null otherwise.

TNM SLINK* OrigDummyAttached() – whether or not its incoming link con-

tains a dummy origin

Return – the link pointer if the incoming link contains a
dummy origin; null otherwise.

Class TNM DNODE Parent class: TNM SNODE

Data Members:

TNM ROUTINGTAB rout-

ingTable
– give the adaptive optimal routing policy.

PATHELEM** tdRouting – give the optimal routing policy, used for
time-dependent routing.

NETSIMPATHELEM** td-

SPTree
– store the information of the next link on the

spanning tree.

Constructor:

void TNM DNODE() – a default constructor.

Return – none.

Class TNM PNODE Parent class: TNM DNODE

Data Members:

vector<TNM PPATH∗ >
m stochpath

– store the FSD-admissible paths.
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PATHELEM** tdRouting – give the optimal routing policy, used for
time-dependent routing.

bool m isDestination – whether or not this node is the destination.

int m nInterval – the number of discrete points describing the
distributions.

Constructor:

void TNM PNODE() – a default constructor

Return – none.

Operations:

void UpdateFrontier(int SD) – update the frontier

Return – none

TNM PPATH* CreateNewPath(TNM PRBLK *lk, TNM PPATH* currentPath, int

SD, bool record, fstream *outfile) – create a new path

Return – the pointer of the new path.

TNM PRBLK* GetLink(TNM PNODE *to) – get the link betwenn two given

nodes

Return – link pointer if the link exists; null otherwise.

bool CheckNewPathWithFrontier(TNM PPATH *newpath, int SD, bool EDA, bool

record, fstream *outfile1, bool memorySave) – check whether the given new path

can dominate the current frontier or not

Return – true if dominates; false otherwise.

void ClearPath(bool record, fstream *outfile1) – delete all FSD-admissible path

and clear the memory

Return – none.

bool NodeUpdate(TNM PNODE *to, int SD, bool EDA, bool record, fstream *out-

file1, bool memorySave) – check whether the set of FSD-admissible paths at

current node can be updated or not based on the FSD-admissible paths on the

given downstream node

Return – true if the set of FSD-admissible paths is updated;
false otherwise.

bool PathComparison(TNM PPATH *newpath, int SD, bool record, fstream *out-

file1, bool memorySave) – check whether the given new path can dominate (or

be dominated by) the current FSD-admissible paths or not at this node
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Return – true if the new path dominates any existing FSD-
admissible paths; false otherwise.

int PrintPathAtNODE(vector<TNM ProbPath∗ > solutionPaths, int sd, string

&networkName) – print out the distribution of all FSD-admissible paths at the

current node

Return – 0 if succeeds; a non-zero number otherwise.

bool CheckRepeatPath(TNM PPATH *thatpath, bool record, fstream *outfile1) –

check whether or not the given path already exists in the set of the current

FSD-admissible paths

Return – true if repeat path appears; false otherwise.

void ClearNode() – clear all memory associated with the current node

Return – none.

void SetNumberOfInterval(int n) – set the number of discrete points

Return – none.

int GetNumberOfInterval() – get the number of discrete points

Return – number of discrete points.

Class TNM SLINK Parent class: N/A

Data Members:

int id – the link ID.

int orderID – the order ID of the link in the vector.

TNM LINKTYPE type – link type.

TNM SNODE *head – the pointer of the node that the link points
to.

TNM SNODE *tail – the pointer of the node where the link goes
out.

floatType capacity – the capacity of the link.

floatType volume – the volume of the link.

floatType length – the length of the link.

floatType ffs – the free flow speed of the link.

floatType fft – the free flow travel time of the link.
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floatType cost – the general cost of the link.

floatType fdCost – the derivative of link cost.

floatType* buffer – it is the working space for outside using.

floatType markStatus – a status variable for temporary usage.

TNM SLINK *revLink – the pointer toward the link on the reverse
direction.

bool dummy – if the link is a temporary ”dummy” link.
vector<TNM SPATH∗ >
pathInciPtr

– a vector contains all path pointers which use
the link.

Constructor:

void TNM SLINK() – a default constructor

Return – none.

Operations:

bool Initialize(const LINK VALCONTAINER cont) – initialize the link

Return – true if succeeds; false otherwise.

void ConnectFW() – put the link’s pointer to tail node’s forwStar

Return – none.

void ConnectBK() – put the link’s pointer to head node’s backStar

Return – none

void DisconnectFW() – erase link’s pointer from tail’node’s forwStar

Return – none

void DisconnectBK() – erase link’s pointer to head node’s backstar

Return – none

bool CheckParallel() – check whether or not two links are parallel

Return – true if parallel; false otherwise.

Class TNM DLINK Parent class: TNM BPRLK

Data Members:

floatType laneHldCap – hold capacity per lane: veh/mile/lane.

floatType laneFlwCap – flow capacity per lane: veh/hr/lane.
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tinyInt numOfLanes – the number of lanes.

smallInt inVehs – number of vehicles entering into the link at
current time interval.

smallInt unitFFT – free flow travel time in unit loading time.

short dirIndex – the direction index of the outgoing link with
respect a node.

short bDirIndex – backward direction index.

largeInt cumIn – it is used when output cumulative file.

largeInt cumOut – it is used when output.

largeInt* tdTT – travel time array, will be allocated and
deleted as required.

largeInt* tdCumIn – time-dependent cumin.

largeInt* tdCumOut – time-dependent cumout file.

floatType* tdCost – this is used for arrival on time, store the
probability of each possible travel time.

Constructor:

void TNM DLINK() – a default constructor

Return – none.

Overridables:

bool Initialize(const LINK VALCONTAINER cont) – initialize the link

Return – true if succeeds; false otherwise.

void ConnectFW() – put the link’s pointer to tail node’s forwStar

Return – none.

void ConnectBK() – put the link’s pointer to head node’s backStar

Return – none

void DisconnectFW() – erase link’s pointer from tail’node’s forwStar

Return – none

void DisconnectBK() – erase link’s pointer to head node’s backstar

Return – none

Class TNM PBRLINK Parent class: TNM DLINK

Data Members:
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int m stampid – the stamp ID of the link.

TNM ProbDist* m pdist – probability distribution.

Constructor:

void TNM PBRLINK() – a default constructor

Return – none.

Operations:

bool CreateDist() – create the distribution of link travel time

Return – true if succeeds; false otherwise.

void DeleteDist() – erase the distribution and release the memory

Return – none.

TNM ProbDist* GetDist() – get the pointer of the distribution

Return – the pointer of the distribution.

string GetStampID() – convert the stamp ID to string

Return – the string of stamp ID

Overridables:

void ConnectFW() – put the link’s pointer to tail node’s forwStar

Return – none.

void ConnectBK() – put the link’s pointer to head node’s backStar

Return – none

void DisconnectFW() – erase link’s pointer from tail’node’s forwStar

Return – none

void DisconnectBK() – erase link’s pointer to head node’s backstar

Return – none

Class TNM GCMLINK Parent class: TNM PBRLINK

Data Members:
enum DTYPE DT NONE,

DT DETECTOR,

DT IPASS, DT DETIPASS

– type of the detectors.

string m roadName – store road name.
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string m dirType – direction type.
vector<TNM PDetector∗ >
m pdetVec

– the point detectors that use the link.

vector<TNM LDetector∗ >
m ldetVec

– the line detector that use this link.

vector<double>

m ldetRatio
– how much weight this ldet carries for this

link.
DTYPE m detType – the type of detectors.

bool m dbDataEffect – the data collected from database is effective
or not, for example, some link has data such
min¿max, so this is ineffective data.

Constructor:

void TNM GCMLINK() – a default constructor

Return – none.

Overridables:

bool Initialize(const LINK VALCONTAINER cont) – initialize the link

Return – true if succeeds; false otherwise.

void Print() – print out the result

Return – none.

Class TNM SPATH Parent class: N/A

Data Members:

int id – the path ID.

floatType* stochTD – store the third order stochastic data.

floatType flow – the path flow

floatType cost – the path cost.

floatType* buffer – a working space for outside using.

short markStatus – the mark status.
vector<TNM SLINK∗ >

path
– store the links traversed by the path.

Constructor:

void TNM SPATH() – a default constructor

Return – none.
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Operations:

bool IsConnected() – check if the links are connecting with each other.

Return – true if connecting exists; false otherwise

TNM SNODE* GetStartNode() – get the start node of the path

Return – the pointer of the start node.

TNM SNODE* GetEndNode() – get the end node of the path

Return – the pointer of the end node.

floatType PathLength() – compute path length

Return – the length of the path.

floatType PathCostS() – compute static path cost by simply adding the link-

cost

Return – the static cost.

floatType PathCost(bool fbToll = false) – compute path cost by going through

its all links

Return – the cost.

largeInt TDPathTime(int startTime, largeInt simHorz) – compute time dependent

path travel time

Return – the travel time.

floatType TDPathCost(int startTime, largeInt simHorz) – compute time depen-

dent path travel cost

Return – the cost.

floatType FDPathCost(bool fbToll = false) – the first order derivative of static

path cost

Return – the first order derivative of the cost.

void ToLinkFlow() – convert path flow to links flows

Return – none.

void SetID() – set path ID

Return – none.

void SetID(int id) – enforce an ID to the path

Return – none.

void UnsetID() – set ID = 0
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Return – none.

int GetLinkNum() – get the number of links traversed by the path

Return – the number of links.

bool FormCycle(TNM SLINK *link) – check if the input link will form a cycle

with the existing links on path

Return – true if a cycle forms; false otherwise.

void ToLinkOrgFlow(floatType flow) – update for each link volume as well origin-

based flow

Return – none.

void AugmentFlow() – add flow to all links belong to the path with the mini-

mum cost

Return – none.

void Print(bool node = false) – print out the information of the path

Return – none.

Class TNM ProbPath Parent class: TNM SPATH

Data Members:

TNM PPATH* m ppath – a TNM PPATH object, through which to get
the distribution of the path travel time.

Constructor:

void TNM ProbPath() – a default constructor

Return – none.

Operations:

bool Setup(TNM PPATH *pPath) – set up the data member pointer m ppath

Return – true if succeeds; false otherwise.

TNM PPATH* GetPPath() – get the distribution of the path travel time

Return – the pointer of the data member m ppath

Overridables:

void Print(bool node = false) – print out the information of the path
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Return – none.

Class TNM PPATH Parent class: N/A

Data Members:

TNM ProbDistPath m dist – distribution of path travel time.

floatType* stochTD – store the third order stochastic data.

TNM PRBLK* m via – which link the path at a specific node point
to.

TNM PPATH* m nextPath – which path the path at a specific node point
to.

vector<TNM PPATH∗ >
m upstreamPath

– the set of path that is created based on the
current path.

Constructor:

void TNM PPATH() – a default constructor.

Return – none.

Class TNM ProbDis Parent class: N/A

Data Members:

floatType* m spt – the array of support points.

floatType* m pdf – the array of probability corresponding to the
support points.

int m numEffSpt – the number of effective support points.

static int m sptRes – the resolution of support points, default =
100.

static double m prbRes – probability points resolution, default =
0.01;.

static int m count – count how many instances.

static int m sdAnchor – number of points for which SD is checked.

Constructor:

void TNM ProbDis() – a default constructor.

Return – none.

Operations:
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int InitializeFromCDF(floatType *cdf, int np, double minSupport, floatType max-

Support) – initialize the distribution of the given CDF

Return – the number of effective support points.

void Reset(floatType b, floatType e, floatType prob = −1.0) – reset the value

of the minimum and maximum support points, and set that all probabilities

equal 0.01 (there are 100 support points)

Return – none.

int Convolution(TNM ProbDist *pb) – convolution of two distributions

Return – 0

int FSDCheck(TNM ProbDist *pb) – check the first order stochastic dominance

(FSD) between two random variables

Return – 1 if ”this” dominates, -1 otherwise, 0 if no dominance
established.

floatType CumProb(floatType sprt) – calculate the cumulative probability: get P

such that P= P(x<sprt)

Return – P.

floatType InvCumProb(floatType prob) – get sprt such that P(x<sprt) = prob

Return – sprt.

void GetCDF(floatType *&cdf, floatType *&bp, int n) – return a CDF of n+1

points

Return – none.

inline floatType* GetPdfPtr() – get the array of PDF

Return – m pdf.

inline floatType* GetSptPtr() – get the array of the support points

Return – m spt.

inline floatType GetPdf(int i) – get a specific value of PDF

Return – m pdf[i] if 0 ≤i<m numEffSpt; -1 otherwise.

inline floatType GetSpt(int i) – get a specific support point

Return – m spt[i] if 0 ≤i<m numEffSpt; -POS INF FLOAT
otherwise.

inline floatType GetMinSupport() – get the minimum support point

Return – m spt[0].

inline floatType GetMaxSupport() – get the maximum support point
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Return – m spt[m numEffSpt −1].

inline floatType GetMinBreakPoint() – get the minimum break point

Return – 1.5·m spt[0]− 0.5cdotm spt[1].

inline floatType GetMaxBreakPoint() – get the maximum break point

Return – 1.5·m spt[m numEffSpt −1] −
0.5·m spt[m numEffSpt−2].

inline int GetNumEffSupport() – get the number of effective support points

Return – m numEffSpt.

void GetMeanVar(floatType &mean, floatType &variance) – get the mean and

variance of the distribution

Return – none.

floatType CumProb(int ix, floatType cump, floatType sprt) – get the probability

of being less a given value

Return – P(x<sprt).

floatType InvCumProb(int ix, floatType cump, floatType prob) – get sprt such that

P(x<sprt) = prob

Return – sprt.

static int GetSptRes() – get the resolution of the support points

Return – m sptRes.

static floatType GetProbRes() – get the resolution of probability

Return – m prbRes.

static int GetSDAnchor() – get the number of points used for FSD check

Return – m sdAnchor.

static void SetSDAnchor(int sa) – set the number of points used for FSD check

Return – none.

void Consolidate() – call this function to consolidate the distribution

Return – none.

Class TNM ProbDistPath Parent class: TNM ProbDis

Data Members:
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floatType* m cdfArea – a array of areas under the cumulative den-
sity function (CDF), used to check the sec-
ond order stochastic dominance (SSD) only.

Constructor:

void TNM ProbDistPath() – a default constructor

Return – none.

Operations:

void ProduceCDFArea() – generate a array of m cdfArea, specially used for SSD

check

Return – none.

floatType GetCDFArea(int i) – get the area under the CDF before a given point

Return – the area under the CDF.

floatType* GetCDFArea() – get the data member m cdfArea

Return – m cdfArea

void ClearCDFArea() – erase the memory occupied by m cdfArea

Return – none.
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