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    Executive Summary 
 
Inclement weather can significantly degrade roadway traffic operations, reducing service levels 
and creating unsafe conditions.  Advances in sensor technologies and continuing deployment of 
intelligent transportation system (ITS) architectures provide an important opportunity for traffic 
management agencies to anticipate, mitigate, and intervene through various advisory and control 
measures to better manage conditions in the presence of inclement weather. Achieving this 
potential requires tying weather forecasting and traffic management capabilities together in an 
integrated framework that captures the effect of weather and weather-related measures on traffic 
system performance.  
 
Traffic analysis tools used in practice typically ignore the effect of weather, and hence lack 
essential features to support weather-related traffic management.  This study overcomes this 
deficiency by developing weather-sensitive traffic prediction and estimation models and 
incorporating them in Traffic Estimation and Prediction (TrEPS) tools intended for online 
operation in traffic management centers (TMC) as well as for offline evaluation of contemplated 
measures.  
 
The development of weather-sensitive TrEPS is built on (1) a synthesis of existing cross-
disciplinary knowledge on traffic responses to weather conditions and the application of weather-
responsive advisory and control strategies, and (2) a thorough review of existing corridor and 
network traffic estimation and prediction models and systems that incorporate weather impacts 
or that can be adjusted to account for weather conditions. The synthesis addresses both the 
impact of weather events on traffic system performance (supply side), as well as traveler 
behavioral responses to weather events and related traffic advisory information (demand side).  
Both aspects are incorporated in the models developed in the study. 
 
The principal supply-side and demand-side elements affected by adverse weather are 
systematically identified and modeled in the framework of traffic estimation and prediction 
systems, in order to account for changing weather conditions, as well as the availability of 
traveler information systems and weather-responsive traffic control devices. Where possible, the 
models and relations developed have been calibrated using available observations of traffic and 
user behavior in conjunction with prevailing weather events. The proposed weather-related 
features have been implemented in the DYNASMART TrEPS, and demonstrated through 
successful application to a real world network, focusing on two aspects: (1) assessing the impacts 
of adverse weather on transportation networks; and (2) evaluating effectiveness of weather-
related advisory/control strategies in alleviating traffic congestion due to adverse weather 
conditions.  
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The procedures implemented provide immediately applicable tools that capture knowledge 
accumulated to date in the growing body of literature regarding weather effects on traffic.  The 
application to a real world network shows that the proposed model can be used to evaluate 
weather impacts on transportation networks and the effectiveness of weather-related variable 
message signs. 
 
The high level framework for incorporating weather impacts in TrEPS, presented in this study, 
provides a direction for future development towards a modern approach to traffic management 
under adverse traffic that recognizes modern technological developments (e.g. weather 
sensing/forecasting, weather responsive traffic management).  The work accomplished in this 
study advances the state of the art in incorporating weather effects in network analysis tools.  
Additional effort in two main areas is necessary to translate these advances into practice.  The 
first entails actual implementation in the context of a regional planning and/or traffic operations 
agency to establish the model and calibrate it for application under a variety of local conditions 
and traffic patterns.  The second area of development would focus on weather-related traffic 
management and control measures, and interfacing their actual deployment with the decision-
support tools developed in this project.    
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    1.  Introduction 
 
The disruptive effect of inclement weather on traffic is well known to most drivers and travelers, 
and is a challenging issue to traffic engineers and managers. In addition to its staggering impact 
on safety (it is estimated that about 28% of all highway crashes and 19% of all fatalities involve 
weather-related adverse road conditions as a factor), adverse weather results in reduced service 
capacity (often at the most critical of times), diminished reliability of travel, reflected in 
considerable variability and unpredictability, and greater risk of accident involvement. It is well 
documented that weather exerts significant impact on several key traffic flow parameters, such as 
free flow speed and capacity (e.g. Kockelman, 1998; Smith et al. (2004) and a recent FHWA 
report (Hranac et al., 2006) summarizing empirical studies on traffic flow in inclement weather). 
In addition, adverse weather often affects tripmaker decisions of travel mode, route, timing, 
destination, or even whether to make the trip at all (e.g. telecommute or teleshop instead). Thus, 
weather affects both the supply and demand sides of transportation. Recognizing it into 
transportation operations and management has the potential to improve the performance of the 
transportation system at times where such improvement is most critically needed. 
 
Yet, an assessment of current and past practice, as well as of the major reference documents 
typically used by practicing traffic engineers, quickly reveals that there is little out there to guide 
traffic planners and engineers in dealing with adverse weather on a regular basis. There appears 
to be a perception that there is not much that one could do to deal with such situations, other than 
caution drivers to stay home, drive slowly, or be more alert. This perception may be rooted in 
three inter-related causes: (1) absence of specific actions and measures, and accepted conditions 
for their application, that could be deployed specifically to manage traffic under adverse weather; 
(2) lack of tools to support such management decisions, including analysis/evaluation of the 
impact of contemplated actions and design of interventions, both off-line and on-line; and (3) 
insufficient understanding of the [qualitative and quantitative] effects of adverse weather of 
varying characteristics on traffic flow, on the performance of different types of facilities with 
varying geometric and operational features, and on the response of users to the weather 
phenomena as well as to contemplated control and management actions. 
 
Advances in sensor technologies and continuing deployment of intelligent transportation system 
(ITS) architectures provide an important opportunity to anticipate, mitigate, and intervene 
through various advisory and control measures to improve traffic conditions in the presence of 
inclement weather. The premise of ITS is the ability to sense prevailing conditions, anticipate 
unfolding future conditions, and rapidly devise actions to optimize system performance in real-
time. Dealing with adverse weather requires not only sensing of traffic conditions, but also the 
ability to forecast the weather in real-time for operational purposes. Recognizing the importance 
of tying weather and traffic management together in areas exposed to extreme weather situations, 
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such as hurricanes and floods, some Traffic Management Centers (TMC) co-locate the weather 
service personnel with the usual traffic management agencies (police, traffic operators, 
Emergency Medical Services). Another relevant initiative is the Clarus weather data system, 
intended to provide traffic management centers with accurate real-time weather information 
(Pisano and Goodwin, 2002; Mixon-Hill Inc. et al., 2005; Pisano, Alfelor, et al., 2005; FHWA 
Clarus web site, at http://www.its.dot.gov/clarus/index.htm). The weather information, along 
with the traffic information obtained from ITS sensors, enable promising new opportunities to 
improve traffic operations and management under inclement weather conditions. In addition, the 
Clarus system will eventually be coordinated with IntelliDriveSM systems such that both 
vehicular information as well as weather data can be obtained for traffic management.  
 
A critical methodological capability in the above architecture is a Traffic Estimation and 
Prediction System (TrEPS). Because the dynamics of traffic systems are complex, many 
situations call for strategies that anticipate unfolding conditions instead of adopting a purely 
reactive approach. Real-time simulation of the traffic network forms the basis of a state 
prediction capability that fuses historical data with sensor information, and uses a description of 
how traffic behaves in networks to predict future conditions, and accordingly develop control 
measures.  The estimated state of the network and predicted future states, in terms of flows, 
travel times, and other time-varying performance characteristics, are used in the on-line 
generation and real-time evaluation of a wide range of measures, including information supply to 
users, VMS displays, coordinated signal timing for diversion paths, as well as weather-related 
interventions (through variable speed displays, advisory information, signal timing adjustments 
and so on). The core of the descriptive DTA capability is a traffic simulation model, intended to 
capture the dynamics of traffic flow movement in the network (Jayakrishnan et al. 1994; 
Mahmassani 1998, 2001). 
 
Recognizing the need for prediction in advanced traffic management systems, the FHWA funded 
R&D into the methodological foundations of simulation-based DTA for TrEPS application, and 
subsequently supported the development of two prototypes, DYNASMART-X and DynaMIT, 
both of which adopted similar methodological decisions with regard to the underlying simulation 
logic—specifically, to use a mesoscopic approach in which individual particles (vehicles) move 
according to local speeds determined consistently with (macroscopic) relations among averages 
of speed and density. This mesoscopic approach for network-level TrEPS defines the state of the 
art in this domain. However, these tools have to date only been calibrated and tested under 
“normal” weather conditions. In other words, no provision has been made to explicitly capture 
the behavioral phenomena that determine traffic patterns under adverse weather, predict how 
traffic might be impacted by such weather, and how it might respond to various advisory and 
regulatory interventions aimed at managing traffic during such conditions. Therefore, while a 
major need for on-line estimation and prediction arises precisely because of unanticipated 



Final Report  33  
 

 

weather perturbations, the tools developed for such applications did not initially have the ability 
to represent traffic behavior under such conditions, or in response to the possible interventions.  
 
To address the above-mentioned deficiency this project is aimed at developing weather-sensitive 
traffic prediction and estimation models and incorporate them in existing traffic estimation and 
prediction systems. In particular, the following tasks are performed to achieve these goals:  
 

 Review and summarize existing knowledge on traffic responses to weather conditions and 
the application of weather-responsive advisory and control strategies, including both pre-
trip decisions (i.e., departure time, mode choice and route choice) and en-route traffic 
behavior (i.e., speed, speed variance, volume, etc.) 

 Review and summarize existing corridor and network traffic estimation and prediction 
models and systems that incorporate weather impacts or that can be adjusted to account for 
weather conditions. 

 Develop traffic estimation and prediction models at the corridor and network levels that 
account for traffic response to inclement weather with and without the presence of advisory 
and control strategies. 

 Incorporate models of traffic response to inclement weather in existing corridor and 
network traffic prediction and estimation system to account for changing weather 
conditions as well as the availability of traveler information systems and weather-
responsive traffic management and control devices.  

 
The remainder of this report is organized as follows. A literature review is presented in Chapter 2, 
which covers two major aspects: (1) impact of weather events on traffic system performance 
(supply side); (2) traveler behavioral responses to weather events and related traffic advisory 
information (demand side). This is followed by a review of existing traffic prediction/estimation 
models and systems in Chapter 3, which can be used for both planning and real-time traffic 
management applications at the corridor and network levels (i.e., DYNASMART, DynaMIT). 
Chapter 4 presents a methodology to model the weather impact in DYNASMART. The principal 
supply-side and demand-side elements that would be affected by adverse weather are identified 
and modeled in the framework of traffic estimation and prediction systems. These proposed 
weather-related features are implemented in DYNASMART, as described in Chapter 5. In 
Chapter 6, calibration procedures as well as the results are presented. Chapter 7 demonstrates the 
application of the weather-sensitive traffic estimation and prediction model to a real world 
network, focusing on two aspects: (1) assessing the impacts of adverse weather on transportation 
networks; and (2) evaluating effectiveness of weather-related advisory/control strategies in 
alleviating traffic congestion due to adverse weather conditions. Finally, Chapter 8 concludes the 
project and discusses further research directions. 
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    2. Literature review  
 

This chapter presents the review of the literature regarding traffic responses to weather events 
and the application of weather responsive traffic advisory and control strategies. The review 
focuses on two main areas of the literature: (1) impact of weather events on traffic system 
performance (i.e. supply side impacts), and (2) traveler responses to weather events and related 
traffic advisory information (i.e. demand side impacts). These two areas are generally 
unconnected in the literature.  The first area developed primarily in the traffic flow theory/traffic 
engineering community, whereas the second has been the purview of travel behavior researchers 
and demand analysts.  This study is among the first to combine and juxtapose these two hitherto 
separate domains, recognizing that behavioral responses and system performance interact in 
determining the manner in which weather events and weather-related information interact in 
determining traffic flows and associated travel times through a network. 
 
As has been recognized since the inception of this study, the literature is considerably richer in 
regard to the supply-side relative to the demand-side.  This is in part due to the greater relative 
ease of measurement and observation in the traffic arena, compared to the demand area, which 
often requires direct participation of the respondent in a tracking and/or interview process. This 
section first presents the traffic performance-related material, followed by contributions to the 
behavior area.  
 
 

2.1 Traffic Performance under Weather Events 

 
Since the early 1950’s (Tanner, 1952), it has been recognized that weather conditions affect 
driver behavior and the manner in which a transportation system needs to be operated. By 
modifying speeds, headways as well as other parameters, drivers’ reactions impact the overall 
system performance. This section presents a detailed literature review on the classification of 
inclement weather conditions and their translation into measurable objective parameters. The 
impact of such conditions on speed-flow-density relationships is first introduced. Such impact is 
associated with a change in capacity, delay, volume and speed, and reflects drivers’ behavior on 
a given road section. Once the change in these parameters is better understood, the control aspect 
of the study is analyzed; research studies linking weather effects to signal timing, unsignalized 
intersections and variable message signs (VMS) are reviewed. 
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2.1.1 Weather Conditions 
 
The impact of “weather conditions” on transportation systems is a general term that may pose 
some confusion.   Researchers have used different classification schemes for weather conditions, 
because these conditions differ considerably in type and in magnitude (Rakha et al., 2007). Some 
weather conditions are extreme in nature (tornados, floods, typhoons, hurricanes etc.) and thus 
may trigger a different response by the drivers. Such extreme conditions are outside the 
immediate focus of the present study.  Other inclement weather conditions (light and heavy rain, 
light and heavy snow etc.) offer a less compressed time frame to the decision makers, and allow 
drivers to retain an acceptable amount of control on their vehicles; this control may be less than 
under “normal everyday” situation due to physical factors such as visibility, physical discomfort 
(cold or hot temperatures) and reduced pavement friction with the tires when there is 
precipitation or icy conditions prevail. 
 
As mentioned earlier, most existing studies do not describe all “weather conditions” in the form 
of measurable objective parameters, making it difficult to explain or quantify the effect of such 
conditions on the transportation systems and their users. Martin et al. (2000) suggested that 
before analyzing the impact of such conditions, four dimensions need to be considered: 
 

1. Severity of the condition 
2. Duration 
3. Geographic area of influence 
4. Traffic flow or the demand served by the network 

 
According to the literature, most inclement conditions can be classified into one of three types:  
“rain”, “snow” and “others” (wind, fog etc.).  These in their turn differ in intensity (light versus 
heavy).  In reviewing previous research efforts, Rakha et al. (2007) reported the influence of 
these conditions on speed and volume as summarized in Table 2-1through Table 2-4. 
 

Table 2-1 Rain Effects on Speed 
 Speed Reduction 

Researcher Ibrahim and Hall Kyte et al. Smith et al. 

Location Toronto, Ontario Idaho 
Hampton Roads, 

Virginia 
Year 1994 2001 2004 

Light Rain 
1.9-12.9 km/hr  

(1.2-8 mph) 
9.5 km/hr (5.9 mph) 3-5% 

Heavy Rain 
4.8-16.1 km/h  

(3-10 mph) 
9.5 km/hr (5.9 mph) 3-5% 

Source: Rakha et al., 2007 
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Table 2-2 Snow Effects on Volume 
Volume Reduction 

 
Freeway Arterial 

Researcher Hanbali and Kuemmel Knapp Maki 

Location 
Illinois, Minnesota, New 

York, Wisconsin 
Iowa 

Minneapolis, 
Minnesota 

Year 1992 1995-1998 1999 
Light Snow 7-31% - - 
Heavy Snow 11-47% 16-47% 15-30% 

Source: Rakha et al., 2007 
 

Table 2-3 Snow Effects on Speed 
Speed Reduction 

 
Freeway Arterial 

Researcher Ibrahim and Hall Kyte et al. Maki Perrin 

Location Toronto, Ontario Idaho 
Minneapolis, 

Minnesota 
Salt Lake City, 

Utah 
Year 1994 2001 1999 2001 

Light Snow 
0.97 km/hr 
(0.6mph) 

16.4 km/hr 
(10.19 mph) 

- 13% 

Heavy Snow 
37-41.8 km/hr 
(23-26mph) 

16.4 km/hr 
(10.19 mph) 

40% 25-30% 

Source: Rakha et al., 2007 
 

Table 2-4 Summary of Weather Impact on Macroscopic Traffic Parameters 

Factors\Reduction Volume 
Maximum 

Observed Flow 
Capacity Speed 

Rain - 0-20% 4-47% - 
Snow 7-47% 5-10% 30% 13-40% 
Wind - - - 10% 

Source: Rakha et al., 2007 
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2.1.2 Human Factors 
 
As mentioned earlier, parameters directly linking weather conditions (visibility factor, pavement 
friction factor) to the driving task (perception and execution) are rarely used.  Previous studies 
have focused mainly on two parameters, visibility and traction. 
 
Visibility 
 
While perceiving a stimulus to which drivers need to react, visibility plays an important role in 
understanding driver behavior during inclement weather conditions. A limited amount of 
research focused explicitly on visibility as a factor impacting traffic flow. Mostly, low visibility 
has been implied by the presence of heavy rain or snow conditions that reduces the sight distance 
of the drivers. Brilon and Ponzlet (1996) studied visibility in the context of daylight versus 
darkness. Based on data collected in Germany, a 13% to 47% reduction in capacity was observed 
in darkness compared to daylight conditions. 
 
On the other hand, Kyte et al. (2001) explicitly defined a critical visibility distance of 0.3 km 
(0.18 mile), below which the speed was reduced by 0.77 km/hr (0.48 mph) for every 0.01 km 
(0.0062 mile) reduction in visibility. In contrast to such results, Snowden et al. (1998) found that, 
based on a laboratory simulation, drivers tended to underestimate their speed under more foggy 
environmental conditions. Accordingly, drivers subconsciously increase their speed as they get 
used to the surrounding environment. 
 
Traction 
 
During the execution of a given response by the drivers (accelerating, decelerating, steering), 
traction reflects the friction that exists between the tires and the pavement. Explicit friction 
measurement (friction coefficient) has not been associated with different weather conditions that 
are classified in section 2.1.1. To study the impact of snow and ice on the highway system, the 
Federal Highway Administration (FHWA) offered a weather classification scheme with seven 
categories in ascending severity ID’s. These categories are closely related to the pavement 
conditions as well as the resulting speed reduction (Table 2-5).  
 
It should be noted that, while capturing the weather impact on the perception (visibility) and the 
execution (traction) aspect of driver behavior, few researchers focused on the judgment aspect 
(reaction time, weight on different alternatives). Some studies (Zeitlin, 1995) suggested that 
weather affected drivers’ ability to make quick decisions. 
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Table 2-5 Speed Reduction based on Pavement Conditions 
Condition Severity ID Percent Speed Reduction 

Dry 1 0% 
Wet 2 0% 

Wet and Snowing 3 13% 
Wet and Slushy 4 22% 

Slushy in wheel Paths 5 30% 
Snowy and Sticking 6 35% 
Snowing and Packed 7 42% 

Source: FHWA, 1977 
 
A more elaborate multi-dimensional study was introduced by Rakha et al. (2007). For the three 

main macroscopic parameters, namely, maximum flow rate cq and corresponding speed cu  , and 

free-flow speed fu , a weather adjustment factor (WAF) is predicted for a given precipitation 

type (i.e. rain or snow), intensity level, and visibility level. The prediction model is given in the 
following form: 

ivcvcvciciccF 6
2

54
2

321       (2-1) 

where 
WAFF   

i = precipitation intensity (cm/h) 
v = visibility (km) 
iv = interaction term 

654321 ,,,,, cccccc = model coefficients 

 
Using data collected in the Twin Cities, Minnesota, the WAF’s were plotted for both rain and 
snow conditions. The results are shown in Figure 2-1 and Figure 2-2. 
 
In Figure 2-1, the vertical lines show that only rain intensity, not visibility, influences free-flow 
speed and speed at capacity. No significant effect was recorded for the capacity measure. Notice 
that under “rain conditions”, only atmospheric weather parameters (no traction related 
parameters) affect the three macroscopic traffic parameters. This is consistent with the zero 
reduction in speed for wet conditions reported in Table 2-5 (Severity ID 2). On the other hand, 
more significant impact can be seen in “snow conditions”. Capacity is reported to be independent 
of snow intensity (horizontal lines, Figure 2-2). As for the non-linear plots (Figure 2-2), they 
indicate that other parameters (mostly related to pavement conditions) may impact the free-flow 
speed and the speed at capacity and are not captured in the model.  
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Figure 2-1 Variation in WAFs as a Function of Visibility and Rain Intensity Levels;  

Source: Rakha et al., 2007 
 

 

Figure 2-2  Variation in WAFs as a Function of Visibility and Snow Intensity Levels; 

Source: Rakha et al., 2007 
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2.1.3 Traffic Flow Characteristics 
 
After reviewing the different classification schemes of inclement weather conditions, the impact 
of such conditions on traffic flow relationships is discussed in this section. 
 
Speed-Flow-Density Relationships 
 
The speed-flow-density relationships used in current applications do not explicitly take into 
consideration the effect of weather and the corresponding departure from “dry and clear 
conditions”. A singe calibrated flow-density curve is normally used for a given location during 
the entire year, irrespective of the amount of rain or snow falling, the level of visibility/darkness, 
the pavement conditions and the temperatures. Salonen and Puttonen (1982) studied the 
relationship between adverse weather and safety. They found that darkness results in a reduction 
of operating speed by 5 km/hr. In terms of capacity, Jones and Goolsby (1969, 1970) indicated a 
14% reduction during rain; no information was provided on the severity of the rain. This severity 
had an important impact on such reduction as reported by Keltsch and Cleveland (1971). An 
average of 8% reduction was reported. 
 
Ibrahim and Hall (1994) used a dummy variable multiple regression analysis technique to test the 
significance in the differences in traffic conditions between different weather conditions. The 
data used was collected on the Queen Elizabeth Way in Missisauga, Ontario. The three measures 
available were speed, volume and occupancy. Detailed weather records were available from the 
Pearson International Airport. The weather conditions were classified under: clear, light rain, 
heavy rain, light snow and snow storms. The weather data used were those for the months of 
October, November and December 1990, and for January and February 1991. The focus was on 
the off-peak weekday duration (10 AM – 4 PM). Even though two functional forms were tested 
for the flow-occupancy relationship (linear versus quadratic), the linear model was chosen for 
testing the weather effects. For the speed-flow function, based on the regression analysis, the 
light rain caused a drop in the free-flow speed of a maximum of 2km/hr and a change of slope 
between -1.67 to -4.67 m/veh. At a maximum flow of 40 veh/min (2400 veh/hr), an average drop 
of 13 km/hr is observed compared to clear conditions. For the light snow conditions, the free-
flow speed drops by 3 km/hr and the change of slope is between -1.58 and -1.92 m/veh. At the 
2400 veh/hr level, the above gives an 8 km/hr drop in speed. It should be noted that, in light 
precipitation, even though the changes are statistically significant, the scattering of the data 
points makes the above conclusions difficult to apply. 
 
For the heavy precipitation scenarios, the changes in the speed-flow-occupancy functions are 
more noticeable. During heavy rain, the free-flow speeds drop by 5 to 10 km/hr and the slope 
changes by an amount ranging between -1.67 to -4.67 m/veh. Heavy snow causes a drop of free-
flow speed of 38 to 50 km/hr and the change is slope varies between –1.67and -5.08 m/veh. Near 
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capacity (2400 veh/hr), the speeds can be reduced by more than 60 km/hr. In terms of flow-
occupancy relationship, heavy rain caused a reduction in the maximum flow by 10 to 20% and 
heavy rains caused a reduction of 30 to 48%. 
 
Consistently with the above studies, Rakha et al. (2007) reported no change in the functional 
form (linear, quadratic etc.) relating flows, speeds and densities. The authors in this study used 
the Van-Aerde’s model (1995) calibrated using data from Baltimore, Maryland, Seattle, 
Washington and the Twin-Cities, Minnesota. As seen in Figure 2-3 only three main macroscopic 
parameters change in value (free-flow speed, flow at capacity and speed at capacity). 
 

 
Parameter Normal Inclement F 
Free-Speed (km/h): 106 95 0.9 
Capacity (veh/h): 1888 1550 0.82 
Speed-at-Capacity (km/h): 90 75 0.83 
Jam Density (veh/km): 100 90 0.9 
Wave Speed (wj) (km/h): -25 -24.3 0.97 

 

Figure 2-3 Impact of Precipitation on Flow-Density-Speed Relationships;  

Source: Rakha et al., 2007 
 
The constant form is observed at different intensity levels for different weather conditions (snow 
versus rain – See Figure 2-4). 
 
As Ibrahim and Hall’s study focused on freeway sections, it is reported that the impact of 
weather conditions on traffic flow relationships and parameters is different depending on the 



Final Report  1122  
 

 

road types. Chin et al. (2004) used loop detector data from different regions of the United States; 
these data were linked to different weather parameters. Weather conditions were classified into 5 
categories: light rain, heavy rain, light snow, heavy snow, fog and ice. The adverse weather 
conditions impact was translated into loss of capacity and speed and is reported in Table 2-6. 
 

Table 2-6 Speed and Capacity Reduction based on Road Type 
Highway Type 

Urban Freeway Rural Freeway Urban Arterial Rural Arterial 
Weather 

Condition 
Capacity Speed Capacity Speed Capacity Speed Capacity Speed

Light 
Rain 

4% 10% 4% 10% 6% 10% 6% 10% 

Heavy 
Rain 

8% 16% 10% 25% 6% 10% 6% 10% 

Light 
Snow 

7.5% 15% 7.5% 15% 11% 13% 11% 13% 

Heavy 
Snow 

27.5% 38% 27.5% 38% 18% 25% 18% 25% 

Fog 6% 13% 6% 13% 6% 13% 6% 13% 
Ice 27.5% 38% 27.5% 38% 18% 25% 18% 25% 

Source: Chin et al., 2004 
 
The more detailed impact of weather conditions on capacity, delay, volume and speed is 
reviewed in the following sections. 
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Figure 2-4 Sample Traffic Stream Model Variation;  

Source: Rakha et al., 2007 
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Capacity and Saturation Flow Rates 
 
Adverse weather conditions can significantly reduce the operating speed and thus the capacity in 
a given road segment (HCM 2000). It is suggested that speeds are not influenced by the presence 
of wet pavement until visibility is affected (Lamm et al., 1990). Accordingly, light rain does not 
have noticeable impact on traffic flow compared to heavy rain (10% to 15% reduction in 
capacity). 
 
Similar to rain, heavy snow is reported to have a potentially large impact on the operating speed 
(Ibrahim and Hall, 1994). In the corresponding study mentioned earlier, a 30% drop in capacity 
is attributed to heavy snow compared to a 10% reduction in the case of light snow. The main 
reason behind such drop is the search for a greater lateral clearance and longer headways since 
the lane markings are obscured by snow accumulation. 
 
With regard to fog, the HCM noted that a modest amount of research has been performed to 
quantify the corresponding reduction in capacity. Other research focused on the extent of 
influence of different environmental conditions on capacity. These environmental conditions 
were categorized into daylight versus darkness, dry versus wet, and weekend versus weekday 
conditions; the data were collected on 15 Autobahn sites in Germany (Brilon and Ponzlet, 1995). 
Table 2-7 illustrates the main findings. 
 

Table 2-7 Reduction in Capacity from Daylight and Dry Conditions 
 Dark and Dry Daylight and Wet Dark and Wet 

Weekday 13% 12% 38% 
Six Lane 

Weekend 21% 27% - 
Weekday 19% 18% 47% 

Four Lane 
Weekend 25% 29% - 

Source: Brilon and Ponzlet, 1995 
 
The above results recognize the effect of the reduction in light caused by the dark clouds during 
winter periods. 
 
Smith et al. (2004) at the University of Virginia studied the impact of different rainfall intensity 
on freeway capacity and operating speeds. The corresponding traffic (volume, time mean speed 
and occupancy) and weather (rainfall intensity) data were collected for a one year period 
between August 1999 and July 2000 on two freeway links in Hampton Roads, Virginia. While 
the traffic data were collected every 2 minutes using the Smart Travel Laboratory, average speed 
and flow rates were compiled at 15-minutes intervals. As for the weather data, they were 
collected by the weather station at Norfolk International Airport (three miles from the study 
freeway segments) at an hourly rate assuming that the intensity is constant for every 15 minutes 
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in the course of an hour. Based on the guidelines provided by the Swedish Meteorological and 
Hydrological Institute and the Philippine Atmospheric Services Administration, the rainfall was 
classified into light rain (0.01 to 0.25 inch per hour) and heavy rain (greater than 0.25 inch per 
hour). Plotting the speed-flow curves, the maximum throughput observed was estimated to be the 
capacity. The mean of the highest 5% flow rates was used to determine the change in capacity. It 
was concluded that light rain decreased capacity by 4 to 10% while heavy rain decreased 
capacity by 25 to 30%. 
 
Another study by Prevedouros and Chang (2004) used video surveillance data monitoring 
freeway and arterial roadways in Honolulu between 1996 and 2000. On average, a freeway 
capacity reduction of 8.3% was observed. 
 
The results of above mentioned studies, regarding the rain effects on capacity, are summarized in 
Table 2-8. 
 

Table 2-8 Summary of Rain Effects on Capacity 
 Capacity Reduction 

Researcher Ibrahim and Hall 
Brilon and 

Ponzlet 
Smith 

Prevedouros and 
Chang 

Location Toronto, Ontario Germany 
Hampton Roads, 

Virginia 
Honolulu, 

Hawaii 
Year 1994 1995 2004 2004 

Light Rain - 12-47% 4-10% 8.3% 
Heavy Rain 14-15% 12-47% 25-30% 8.3% 

Source: Rakha et al., 2007 
 
Delay 
 
Few researchers have been able to quantify the weather impact on the delay experienced by the 
drivers due to the limitation of data, the inaccuracies involved in travel time estimation and 
number of explanatory variables involved. Stern et al., (2003) used the metropolitan Washington 
D.C. network (33 road segments) to collect travel time data for each weekday between December 
1999 and May 2001. These data were taken in 5 minute increments between 6:30 am and 6:30 
pm. The weather data were collected via Automated Surface Observation System (ASOS) 
stations at three International Airports in the Washington D.C. area. The travel time was 
regressed against weather variables for each site using a two-step linear regression process. The 
final variables kept in the analysis were precipitation type and intensity, wind, visibility distance 
and pavement conditions. 
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The study found an average 14% increase in travel time when weather phenomena occur. The 
pavement condition was the most frequent explanatory variable followed by precipitation. 
 
Traffic Volume and Demand 
 
Although traffic volumes reflect the demand side of the problem, it is reviewed in this section as 
a traffic flow parameter. Adverse weather can reduce demand when drivers cancel or postpone 
their activities, thus their trips. However, an increase in demand is observed if a good portion of 
travelers by bicycles or on foot switches to the private vehicle use (short trips). Adverse weather 
can also shift the peak-hour demand if the drivers choose to leave earlier or later due to unsafe 
driving conditions. 
 
In 1992, the reduction in traffic volumes during snowstorms in rural areas of Illinois, Minnesota, 
New York, and Wisconsin (Hanbali and Kuemmel, 1992) was quantified (shown in Table 2-9). 
The corresponding researchers used automatic vehicle detectors data collected during the first 
three months of 1991. These data include annual average daily traffic and 24-hour counts. Other 
data collected include “highway characteristics, level of service (in terms of snow and ice 
removal), and road treatment. The climate data included storm data (start and end time and date), 
temperature range, snow depth and type of snow”.  Comparing hourly traffic volumes during 
every snowstorm to the “normal” hourly traffic volume, a volume reduction increase with total 
snowfall was found. However, this reduction is less important during peak-hours and during 
weekdays. This may be attributed to the non-discretionary type of trips (home to work and work 
to home trips). 
 

Table 2-9 Volume Reduction due to Snowstorm 
Snowfall Weekdays Weekends 
< 25 mm 7-17% 19-31% 

25-75 mm 11-25% 30-41% 
75-150 mm 18-34% 39-47% 

Source: Hanbali and Kuemmel, 1992 
 
The winter weather impact on traffic volume and safety was studied by Knapp et al. (2000). 
Traffic and weather data were collected hourly along interstate highways in Iowa during the 
years 1995, 1996, 1997 and 1998. The goal is to focus on significant winter storms: precipitation, 
air temperature below freezing, wet pavement surface and a pavement temperature below 
freezing for at least 4 hours with an estimated snowfall exceeding 5.1 mm/hr or 0.2 inch/hr. 
 
Covering 64 winter storm events (618 hours), the analysis showed a traffic volume reduction 
ranging from 16% to 47%. The average reduction was 22.3% where the 95% confidence interval 
is between 22.3% and 35.8%. Based on a regression analysis, the percent volume reduction had a 
significant relationship with total snowfall and the square of the maximum wind speed. 
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Speed 
 
The weather conditions increment impact on speed was one of the first aspects of this research to 
be studied. In 1977, a Federal Highway Administration (FHWA) sponsored study confirmed a 
decrease in speeds during inclement weather. 
 
In the Highway Capacity Manual, the reported weather impact on speeds is based on Ibrahim and 
Hall’s (1994) study.  Conducting a regression analysis on the clear weather data, a quadratic 
model was found to best fit the flow-occupancy relationship; a simple linear model suited the 
speed-flow relationship. Moreover, comparing different relationships under different weather 
conditions, the differences in slope and intercept of the speed-flow function during the rainy 
(snowy) conditions were more significant that the differences between clear and rainy weather; 
in light rain, a 1.9 km/hr (1.2 mph) and 6.4 to 12.9 km.hr (4 to 8 mph) reduction in operating 
speeds is expected during free-flow conditions and at 2400 vehicles/hr flow respectively. In 
heavy rain, a 4.8 to 6.4 km/hr (3 to 4 mph) reduction in speed can be expected for the free-flow 
conditions and a 12.9 to 16 km/hr (8 to 10 mph) reduction for the congested conditions. Finally, 
light snow resulted in a 0.96 km/hr (0.6 mph) drop in free-flow speeds, while heavy snow 
resulted in a 37.0 to 41.8 km/hr (23 to 26 mph) free-flow speed reduction. 
 
Smith et al. (2004) concluded that although operating speed reductions were not as dramatic as 
was the case with capacity reductions, statistically significant reduction (3% - 5 %) in operating 
speed were observed under rainfall conditions compared to no rain at all.   
 
Another related study was conducted by Kyte et al. (2001) on a rural interstate in Idaho. All data 
were collected from the same four-lane, level grade freeway between 1996 and 2000. High-truck 
volumes and low flow rates (mostly less than 500 passenger cars per hour per lane – pcphpl) 
were observed. Collected traffic data include time, speed and vehicle length while weather data 
contains visibility distance, wind speed and direction, air temperature, relative humidity, 
roadway surface condition, and type and amount of precipitation. The data were recorded in five-
minute intervals. The main results obtained in the study are summarized in Table 2-10. 
 
Padget et al. (2001), investigated whether drivers of SUVs, pickup trucks, and passenger cars 
choose different vehicle speeds during winter weather at an urban arterial street in Ames, Iowa, 
between November 1999 and April 2000. The results indicated that winter-weather vehicle 
speeds for all three vehicle types were significantly less than their normal weather speeds, and 
that during the day a large percentage of the speed reduction occurs after snow began to 
accumulate in the gutter pans of the roadway. They also found that speed variability between 
vehicles types increased during different winter-weather conditions and the magnitude of the 
speed differences between SUVs, pickup trucks and passenger cars increased with roadway snow 
cover, but was always less than 5.6 km/h (3.5 mph).   
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Table 2-10 Impact of Environment Conditions on Speed 
Speed Reduction 

Factor 
km/hr Mph 

Wet Pavement 9.5 5.9 
Snow Covered Pavement 16.4 10.2 

Wind > 24 km/hr 11.7 (high variation) 7.3 (high variation) 
Visibility < 0.28 km (critical) 0.77 per 0.01 km below critical 0.48 per 33 ft below critical 

Source: Kyte et al., 2001 
 
2.1.4 Traffic Control Related Parameters 
 
The changes in traffic related parameters and relationships mentioned above suggest a change in 
the control scheme applied to manage a transportation system during inclement weather 
conditions. This section focuses on research performed on the relationships between weather 
conditions and 1) signalized intersections, 2) unsignalized intersections and 3) variable message 
signs (including use of the latter as part of road weather management programs). 
 
Signalized Intersections 
 
Even though a number of research studies tried to identify the impact of inclement weather on 
traffic flow parameters at signalized intersections, only a limited effort considered non-standard 
ways to change signal timing to accommodate such impact. In 1995, Bernardin, Lochmueller and 
Associates measured saturation flow rates, vehicle speeds, lost time and capacity during summer, 
winter and severe winter weather conditions (Martin et al., 2000). Summer conditions were 
defined as temperatures above 14 °F and dry roads or temperatures above 32 °F and wet roads 
with no ice; winter conditions were defined as temperatures between -22 °F and 14 °F and dry 
pavement or “well-sanded hard packed snow”; extreme winter conditions were defined as 
temperature below -22 °F or during snowfall, blizzard, and freezing rain. It was found that 
summer signal timing is not suitable for winter and extreme winter signal timing. This is mainly 
due to the slower vehicle speeds and inaccurate measures from detectors covered by snow. 
Focusing on a 24-signal network in Anchorage, the SIGNAL 85 and TRANSYT-7F signal 
timing optimization packages were used. SIGNAL 85 determined the final phase sequences and 
splits based on the chosen cycle lengths and TRANSYT-7F generated offsets giving better 
arterial progression. The traffic flow parameters input were modified to accommodate the 
weather changes. Table 2-11 shows the main results. The travel time and the delay measures are 
provided on an average hourly basis. The results suggest that the improved timing results in a 
meaningful improvement in delay, accompanied by a slight increase in the percentage of stops. 
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Table 2-11 Improvements based on the Winter Signal Timing Modification in Anchorage 

MOE 
Existing Timing 

(Based on Summer 
Conditions) 

Recommended 
Timing 

Anticipated 
Improvement 

Total Travel Time 1630 veh-hr/hr 1416 veh-hr/hr 13% 
Total Delay 930 veh-hr/hr 716 veh-hr/hr 23% 

Average Delay 49.8 sec/veh 38.4 sec/veh 23% 
Percentage Stops 64% 68% -6% 

System Speed 17.1 mph 19.1 mph -12% 
Source: Martin et al., 2000 
 
It should be mentioned that the study also recommended that no modifications should be made 
on the all-red (1-3 seconds) and amber (4-5 seconds) times during winter conditions. However, 
such changes, which are associated with reduced speeds, would also increase the all-red time and 
decrease the amber time. This topic is still a subject of disagreement between researchers. 
 
A study by Agbolosu-Amison et al. (2004) reveals that inclement weather has a significant 
impact on saturation headways, particularly once slushy conditions start. The saturation flow 
rates were found to decrease at 15 ~ 16% under inclement weather conditions (wet & slushy, 
wheel path slushy and snowy & sticky). However, they concluded that start-up lost time does not 
appear to be significantly affected by inclement weather. 
  
The Minnesota Department of Transportation conducted a study based on data collected on Hwy 
36 between 3-8 pm on several weekdays during different weather conditions (Maki, 1999). Any 
storm of three inches of snow or more was defined as inclement weather. SYNCHRO III 
software was used to optimize signal timing during inclement weather conditions by modifying 
the saturation flow rates, average speeds and lost times. The output data was then compared with 
those corresponding to the signal timings in use and the existing normal conditions. Based on the 
simulated scenarios, the small improvement is illustrated in Table 2-12. 
 
Other interesting conclusions were made based on the empirical collected data; during inclement 
weather conditions, a 15-20% reduction in volumes was reported during the 3-8 pm period and 
15-30% reduction during the peak-hour period (5-6pm). Moreover, consistently with the 
previous study, the speeds decreased from 44 mph to 26 mph (~40%); the saturation flow 
decreased from 1800 vplph to 1600 vplph (11%); and the start-up delay increased from 2 to 3 
seconds. 
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Table 2-12 Improvements based on the Winter Signal Timing Modification in Minnesota 

Scenario 
Cycle Length 

(sec) 

Volume on 
TH 36 

(veh/hr) 

Percentile 
Signal 

Delay/Veh 
(sec) 

Average 
Number of 
Stops/Veh 

Average 
Speed (mph) 

“Normal” 
Weather 

160 2513 55 0.72 16 

“Adverse” 
Weather with 

Existing 
Timing 

160 1912 52 0.72 13 

“Adverse 
Weather” with 

Optimized 
Timing 

160 1912 48 0.68 13 

Source: Martin et al., 2000 
 
In 1992, Parsonson discussed signal timing in adverse weather conditions by relating it to signal 
timing during congested conditions.  The main recommendation was to have zero offset time 
(setting all corridor signals to green at the same time) in snowy corridors. This “flushing” is used 
normally as a management scheme for some heavy congested corridors. Also in 1992, Botha and 
Kruse studied how the residual ice and snow impacted saturation flow rates and start-up lost 
times at signalized intersections. The study used data collected at Fairbanks, Alaska. The results 
are summarized in Table 2-13. 
 

Table 2-13 Saturation Flow Rates Based on Botha-Kruse Study 

Category Winter Summer HCM 
Winter/Summer 

Reduction 
Winter/HCM 

Reduction 
Saturation Flow Rate (vplph) 1463 1714 1800 15% 19% 
Source: Botha and Kruse, 1992 
 
As seen above, the saturation flow rates reported in this study are about 20% less than those 
calculated using the Highway Capacity Manual (HCM). This indicates the fact that the HCM 
rates are not reflective of the specific conditions prevailing on the ground. 
 
Gilliam and Withill (1992) used SCOOT adaptive signal control system to reduce the level of 
congestion at signal networks and that increased due to inclement weather. Wet weather 
parameters were developed and served as input for the SCOOT system (decreased saturation 
flow rates and travel times). An important aspect of the study was the method by which a precise 
traffic monitoring during different weather conditions can be ensured. 
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One of the most comprehensive studies was performed in 2000 (Martin et al., 2000). During the 
winter season of 1999-2000, saturation flow rates, start-up-lost times and vehicle speeds were 
collected for four approaches on two signalized intersections in Salt-Lake City (Intersection 1: 
400 E & 900 S; Intersection 2: 1300 E & 500 S). The data was collected during morning and 
evening peak-hours. The weather data was collected and categorized based on the FHWA 1977 
study (Table 2-4). For the saturation flow rate and speed measures, Table 2-14 and Table 2-15 
(illustrated by Figure 2-5 and Figure 2-6) show the main results. 
 

Table 2-14 Saturation Flow Rate (vphpl) 
700 E & 900 S 1300 E & 500 S 

Road Surface Condition Severity 
AM PM AM PM 

Average 
Percent 

Reduction 
Dry 1 1881 1736 1752 1902 0 
Wet 2 1680 1711 - - 6 

Wet and Snowing 3 1751 1708 1491 1691 11 
Wet and Slushy 4 - 1476 1321 1647 18 

Slushy in wheel Paths 5 - 1421 - - 18 
Snowy and Sticking 6 - - 1395 - 20 
Snowing and Packed 7 - - - - - 

Source: Martin et al., 2000 
 

 

Figure 2-5 Average Saturation Flow Reductions by Weather Condition; Source: Martin et 

al., 2000 
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Table 2-15 Speed (mph) 
700 E & 900 S 1300 E & 500 S 

Road Surface Condition Severity 
AM PM AM PM 

Average 
Percent 

Reduction 
Dry 1 39 31.4 28.4 27.4 0 
Wet 2 34.3 - - 25.2 10 

Wet and Snowing 3 31.4 29.4 - 23.5 13 
Wet and Slushy 4 - 22.0 - 21.8 25 

Slushy in wheel Paths 5 25.5 23.4 - - 30 
Snowy and Sticking 6 - - - - - 
Snowing and Packed 7 - - - - - 

Source: Martin et al., 2000 

 

 

Figure 2-6 Dry Speed Percentage in Inclement Weather, Source: Martin et al., 2000 
 
As can be seen in Table 2-14, no storm was severe enough to record a severity level of 7. 
Moreover, no data was available for speeds beyond severity level 5 for both intersections (Table 
2-15). Nonetheless, a clear reduction in both saturation flow rate and speed is recorded as the 
severity level increases. For the speed values, the reductions in this study are almost identical to 
those reported in the FHWY study in 1977 (Table 2-5 versus Table 2-15). As for saturation flow 
rates, since no single definition of inclement weather conditions is provided, it is difficult to 
compare the reductions obtained in the study with those mentioned earlier (Salt-Lake City, Utah; 
Fairbanks, Alaska; Anchorage, Alaska; and Minneapolis, Minnesota).  
 
In addition to the saturation flow rates and speed reductions, Martin et al (2000) reported the 
following: 
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1. The start-up loss time increases considerably with the severity of the road conditions, 
mainly due to the lesser tire traction. The greatest increase is when slush accumulates 
on the pavement surface. 

2. Most of the northern states (cold weather) do not modify their signal timings during 
inclement weather. 

3. A special timing plan is recommended on major corridors in Salt Lake City during 
inclement weather based on the following: 
a. The modified plan includes new splits and offsets but the same cycle lengths 

unless inclement weather traffic counts are provided and require a different cycle. 
b. There should be an increase in amber time by 10% to 15% depending on the 

intersection size. A 10% (0.5 seconds) increase is appropriate for intersections 
under 50ft wide, and a 15% (1 second) increase is suitable for 100-ft wide 
intersections. 

c. An increase of all red time by 1 second is recommended to consider the slower 
clearing at permitted/protected intersections (a 0.75 seconds longer time is needed 
by the “sneakers”). 

d. A decrease in measured (dry) saturation flow rate of 20% is needed. 
e. The average dry speeds are to be reduced by 30%. 
f. As mentioned earlier the start-up loss time should be 23% higher when devising 

the modified signal timing plan. 
  

Unsignalized Intersections 
 
Based on the literature, there appears to be no scientific literature studying the operational aspect 
of unsignalized intersections during inclement weather. Instead, researchers focused on the gap 
acceptance and the acceleration (start-up lost time) behavior during different environmental 
conditions (NCHRP report, 1996). 
 
Based on observations made by Martin et al. (2000), there is an increase of 23% (from 2 to 2.46 
seconds) in start-up lost time. This is based on 112 dry weather sample points and 134 snowing 
weather points (conditions 4-6, See Table 2-14). The decrease of an intersection’s efficiency is 
not solely related to the increase of the start-up lost time. It is also related to the decrease in 
acceptable gap at unsignalized intersections as well as for permitted left-turn movements at 
signalized intersections. Martin et al. suggested that the critical gap for severity levels 4 through 
6 increased by 25 to 30% on average. This kind of increase is closely related to an intersection 
width (number of lanes on each approach) and the reduced speeds while accelerating at a slower 
rate. 
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Variable Message Signs (VMS) 
 
The common approach to managing highway operations under inclement weather has been 
through the provision of information to travelers, principally through variable message signs.  
Agencies with more progressive programs also provide speed advisory information, reflecting a 
control strategy that considers weather in addition to prevailing traffic conditions in setting 
advisory speeds.  
 
One of the better (and early) examples of this practice in the US is the ATMS program operated 
by the New Jersey Turnpike Authority (NJTA) to control 148 miles (237.9 kilometers) of their 
heavily-travelled turnpike. The NJTA system monitors road and weather conditions, and 
provides speed management and traveler information to motorists accordingly.  The system 
includes 30 environmental sensor stations (ESS) deployed along the turnpike, with pavement 
temperature and condition data collected at 11 sites.  Over 120 Variable Speed Limit (VSL) sign 
assemblies are positioned along the freeway at two-mile (3.2-kilometer) intervals. Sign 
assemblies include VSL signs and speed warning signs, which display “REDUCE SPEED 
AHEAD” messages (in 5-mph increments) and the reason for speed reductions (i.e., “FOG”, 
“SNOW”, or “ICE”) (Goodwin, 2003). 
 
Other weather-related information provided to motorists tends to address immediate hazardous 
conditions, such as reduced visibility due to fog or restrictions due to snow.  These would impact 
directly the traffic flow characteristics on the immediately affected section of highway.  Other 
impacts on travel would depend on the manner in which the information is disseminated to the 
public at large, at their origin location. 
 
The extent of scientific research addressing these impacts is very limited.  Very few systematic 
studies of user responses to this type of information appear to have been conducted.  In this 
section we focus on the more immediate impact of information on the drivers’ response during 
inclement weather conditions.  The next section will consider a wider range of traveler responses.  
Rämä (1999) investigated the drivers’ acceptance of weather controlled signs on Finland’s south 
coast. For that purpose, different VMS and variable speed limit signs were adopted and 590 
drivers were interviewed. The objective was to assess the reactions at various intervals after the 
implementation of the signs in question. Although this study is not based on real-time 
observation, but rather on driver recall (an unreliable approach for this type of application), only 
a small percentage of drivers said that they modified their behavior based on the posted message 
or speed limit. 
 
Consistent with the above finding, Andrey et al. (2003) reported that most drivers access weather 
information prior to their trip and do not change their travel patterns. As for the real-time driving 
pattern, Boyle and Mannering (2004) used a simulator to assess the impact of “real-time 
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weather/incident hazard information provided by VMS and in-vehicle information system”. It 
was found that drivers reduce their speed under adverse conditions but increase it again 
downstream trying to make up the lost time. Also using a driving simulator, Ganesh Babu 
Kolisetty et al. (2006) investigates the effect of variable message signs on driver speed behavior 
under foggy conditions. Focusing on an 8.5 km stretch of an expressway in Japan, the authors 
reported that 40% of the subjects were clearly impacted by the VMS, 40% were marginally 
impacted and 20% were not impacted at all. 
 

2.2  User Responses to Weather Events and Weather-Related Information 

The performance of networks depends largely on users’ response to traffic conditions, which 
environmental conditions, such as adverse weather, can impact by increasing the variability in 
performance. Understanding and modeling the relationship between users’ behaviors and adverse 
weather is important for developing strategies that target user behavior. The literature on adverse 
weather and user behavior has focused on the adjustments users make when faced with these 
conditions. Although the majority of these studies are based on stated-preference type data that 
may not accurately reflect users’ actual behaviors, some important insights regarding the travel 
choice adjustments and preferences of users for weather information can be gained. The existing 
literature on adverse weather and trip-making behavior has examined either the propensity of 
travelers to change trip-making decisions, or their preferences for supplied weather information. 
The next section discusses studies on travel decision adjustments with respect to adverse weather, 
followed by discussion of users’ preferences and response to weather information.  
 
2.2.1 Adverse Weather and Travel Decision Changes 
 
In addition to driver responses, adverse weather may also impact a host of travel decisions either 
made pre-trip or en-route. Most of the existing literature examines departure time, mode and 
route choice adjustments and show that most travelers do make some kind of change in their 
travel decisions under adverse weather (Khattak and de Palma, 1997; de Palma and Rochat, 1999; 
Aaheim and Hauge, 2005). In a detailed survey of commuters in Brussels, the results reveal that 
even travelers with flexible work hours have a regular schedule, and hence do not all make travel 
choice changes, suggesting that changing departure times, modes or routes in response to bad 
weather may be governed by habit or inertial effects (Khattak and de Palma, 1997). Among the 
commuters’ whose travel decisions are impacted by weather, a relatively high percentage 
indicate that departure time would most likely be adjusted relative to route and mode choice 
(Mannering, Kim, Ng and Barfield, 1995; Khattak and de Palma, 1997; de Palma and Rochat, 
1999). One possible explanation for the preference towards departure time adjustment is its 
relative lower costs in terms of searching for alternatives. Adjusting routes would require users 
to search for alternatives to the current route, while switching modes require access to alternative 
modes. Also, although most commuters in the Brussels study had flexible work hours, the higher 
propensity towards changing departure times may indicate that commuters would most likely use 
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this flexibility in selecting the most convenient starting and stopping times, relative to other 
alternatives.  Similar insights had been obtained by Mahmassani and co-workers in conjunction 
with laboratory experiments as well as travel diary surveys of commuter behavior dynamics, 
albeit without explicit consideration of weather (Mahmassani and Stephan, 1988; Caplice and 
Mahmassani, 1992; Mahmassani et al., 1997).  
 
Mode choice has also received significant attention in regards to adverse weather. In the Brussels 
commuter study (Khattak and de Palma, 1997), the results show that although a high number of 
respondents (69%) stated they had access to a secondary mode, only a small fraction (5%) 
actually switched modes with bad weather, suggesting the low impact of weather patterns on 
mode choices. Furthermore, since only a small percentage of respondents used bikes for 
commuting to work, the results suggest that the substitutability between car and transit is limited. 
One possible explanation is that transit may expose passengers to the elements. In a study of 
mode choice during winter versus summer months, the authors showed that a decrease in the 
number of bicycle trips in the winter was accompanied by a large increase in car use for 
commuting purposes (Bergstrom and Magnusson, 2003). However, these studies are based on 
stated preference data and may not represent actual behaviors. A revealed preference study on 
the impact of weather on the travel habits in Bergen, Norway suggests that the impact of weather 
on the substitution between public and private transport is relatively small (Aaheim and Hauge, 
2005). The same study also shows that travel distances decrease under precipitation, except for 
commute trips where there is little discretion regarding the destination.  
 
Although the previous studies mentioned examine several different travel choices in light of 
adverse weather, the literature on activity scheduling changes in response to weather is virtually 
nonexistent. One possible explanation for this is the difficulty in obtaining good quality weather 
data over space and time for timeframes longer than a day. However, one study on the impact of 
the perception of weather information on beach trip decisions suggests that depending on the 
timeframe in which activities were planned, individuals make varying efforts to distort 
information regarding adverse weather (Adams, 1973). The study was based on interviews of 
individuals at a popular beach serving the Boston metropolitan region. The results indicated that 
respondents with a high prior commitment to go to the beach reported a lower likelihood of rain, 
relative to respondents with lower prior commitments, with all individuals presented the same 
weather forecast. Furthermore, individuals with a lower prior commitment tend to cancel the trip 
when given a sixty percent chance of rain. Although the study was not based on revealed 
behaviors, it suggests that individuals respond to weather forecasts with the commitment of the 
activity in mind.  
 
Overall, the literature shows that the impact of adverse weather on trip decisions has been 
examined only to a limited extent, and that almost all of these studies relied on stated preference 
data. This suggests the difficulty in obtaining revealed travel behavior data under varying 
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weather conditions. Furthermore, these studies seem to have focused more on travel decisions, 
such as departure time and mode choice, whereas the literature on activity scheduling 
adjustments to weather has been virtually nonexistent.  
 
2.2.2 Adverse Weather Information and User Response 
 
The literature on weather information provision and user response has primarily focused on two 
issues: (1) the impact of information provision on travel decisions; and (2) the timing of 
provision. The 2000 Brussels study shows that drivers using secondary sources did not change 
their travel choices in numbers that were statistically different relative to drivers using their own 
observations (Khattak and de Palma, 1997). Similarly, de Palma and Rochat (1999) show that, of 
the respondents who state weather is an important factor in their decisions, only 55% used 
secondary sources to keep up with weather forecasts, possibly suggesting a low credit given to 
weather forecasts. A study by Hansen et al (2001) on weather information preferences showed 
that information about weather-related road conditions is important to all groups including 
commuters, recreational travelers, and truckers. Also drivers preferred information about road 
surface conditions and alternative routes above travel time and speeds. Furthermore, the 
conditions that all groups preferred information on were those that impact vehicle performance 
and travel speeds, such as accumulation of snow, ice, high winds, and road closures. Although 
several studies on the impact of information on trip-making behavior have been conducted, few 
provide any indication of response to weather information specifically.  In a study of en-route 
switching (to switch or not to switch), the choice model estimation results indicated that delays 
caused by bad weather decrease the propensity to switch (Polydoropoulou et al., 1996). Several 
studies have examined driver responses to information (Liu and Mahmassani, 1998; Peeta et al., 
2000; Peeta and Yu, 2005). However, weather was not explicitly considered in these studies.  
 
A second issue investigated in the literature is the timing of weather information. Hansen et al. 
(2001) found that truckers preferred information as early as possible, relative to other consumer 
groups. In a study on in-vehicle information provision, Mannering et al., (1995) found that, in 
general, the results for weather information mimicked those of other route and road conditions. 
For example, users driving frequently on major highways with high average commute times have 
decreased preference for “ahead-distance” information. Users with more flexible work hours and 
who change residence frequently, with high number of accidents, have higher preference for 
ahead-distance information. However, some differences were observed. Also, the higher the 
number of car passengers, the more preference for ahead-distance information. This suggests that 
carpool vehicles have a higher preference for weather information, possibly due to the increased 
variability from picking up multiple riders. Furthermore, drivers with a greater number of 
alternative routes have higher preference for this information. Intuitively, if individuals have 
little knowledge of alternative routes in a network, information on bad weather may have little 
impact since they do not know any alternatives. 
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    3. Existing Traffic Prediction/Estimation Models and Systems  
 
This section identifies and reviews existing traffic prediction/estimation models and systems that 
can be used for both planning and real-time traffic management applications at the corridor and 
network levels. 
 
Since the inception of ITS, traffic estimation and prediction have been considered a core 
enabling capability for advanced traveler information systems, as well as for advanced 
transportation management systems, and an integral part of the various architecture documents 
put forth for ITS through its various stages. However, deployments of traffic management 
systems (by associated traffic management centers) have proceeded largely without such 
capability. Similarly, traveler information systems and services with dynamic travel times and/or 
route recommendations have been very slow in coming to the market. Transportation agencies 
have generally been reticent to provide predicted travel times to users, partly concerned about 
public relations in the event of poor prediction or bad recommendations. In addition, for both 
traffic management and traveler information services, adjustment is still ongoing to use real-time 
information on prevailing states, and to try and leverage archived information. Hence the ability 
to make effective use of predictive travel times and traffic conditions often requires a big leap in 
capabilities and operational culture. 
 
On the other hand, studies have continued to show the value of predictive information when 
compared to prevailing information—when supplied to travelers to help route choice 
(Mahmassani and Jayakrishnan 1991; Ben Akiva et al. 1996; Dong et al. 2006), or as a basis for 
setting prices dynamically (Dong et al. 2007). Systems for traffic estimation and prediction 
generally fall into two categories depending on the underlying methodology: (1) simulation-
based, and (2) statistics-based. The latter uses statistical relations among directly measured 
quantities (e.g. time series of speeds and volumes) to produce short term predictions of traffic 
state descriptors for eventual travel time calculation. The former uses a representation of the 
traffic processes in the system and associated network interactions to project future traffic states. 
Simulation-based approaches can provide estimates of conditions on parts of the network where 
sensors are installed, whereas statistics-based approaches can only be applied to links where 
measurements exist, and does not deal adequately with disruptions in the temporal flow patterns. 
Hybrid methods that combine simulation-based approaches with advanced statistical techniques 
for data fusion try to combine the advantages of both approaches. 
 
DYNASMART-P and DynaMIT were conceived as simulation-based approaches to overcome 
the limitations of “black box” statistical methods which had been used at the link level in the 
early literature. Both of these tools also incorporate logic that fuses statistical considerations with 
the structural representations. 
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While real-time estimation and prediction of traffic, and more important, development of 
anticipatory strategies have evolved significantly in the past decade, actual applications remain 
very limited as agencies have shied away from disseminating predictive information and using 
predictions in generating traffic controls. On the other hand, the past five years have seen the 
emergence of third parties providing some type of “real-time” traffic information, though most of 
it is not predictive, and is limited in geographic scope to major facilities with sensors. Often, the 
third parties are consolidators of information collected by government TMC’s. However, a 
couple of private sector entities are now marketing real-time information that is claimed to be 
predictive, primarily for handheld GPS-based devices, though (1) the exact basis or method of 
prediction is not disclosed, though it is not simulation based, and is admittedly (for some) still 
preliminary; and (2) extensive validation has not been submitted for peer review. The most 
notable example is INRIX (courtesy of Microsoft corp.), which claims to use Bayesian statistical 
methods for state estimation. Another is Dash, Inc. a probe-based system where equipped 
vehicles that receive travel information also act as probes, sending information on their 
respective locations and times. While the eventual goal is to feature an integrated predictive 
system, the capabilities available to date are mostly ad hoc. 
 
Because these new systems feature proprietary engines that have not been sufficiently validated 
within the traffic community, they will not be addressed further in his review. At their current 
stage of development, these models do not make special provision for weather effects. The 
discussion will therefore be limited to DYNASMART and DynaMIT as these reflect the state of 
the art in simulation-based prediction. 
 

3.1 Overview of DYNASMART-X 

This section presents an overview of DYNASMART-X, which provides state-of-the-art TrEPS 
functionality, as well as its applicability to support weather-related traffic management.  
 
To place this discussion in context of available simulation-based DTA tools, it is useful to recall 
the difference between online and offline applications of DTA tools.  Online applications are 
intended for real-time estimation and prediction of traffic conditions over the near-term 
(typically less than one hour), to be used in conjunction with traffic management activities such 
as information provision to motorists (via variable message signs or in-vehicle and other portable 
devices), traffic control via signals or ramp meters, and other traffic management functions such 
as incident response, traffic diversion and other congestion mitigation functions.   
DYNASMART-X is such an online traffic estimation and prediction system.   On the other hand, 
offline applications are primarily intended for evaluation and operational planning activities, in 
conjunction with planned disruptions, scenario planning, contemplated future network and 
operational improvements, pricing schemes, and so on.  DYNASMART-P is intended for such 
offline planning and evaluation applications.   
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As an online TrEPS, DYNASMART-X interacts continuously with multiple sources of real-time 
information, such as loop detectors, roadside sensors, and vehicle probes, which it integrates 
with its own model-based representation of the network traffic state. The system combines 
advanced network algorithms and models of trip-maker behavior in response to information in an 
assignment-simulation-based framework to provide: (1) estimates of current network traffic 
conditions; (2) predictions of network flow patterns over the near and medium terms, in response 
to various contemplated traffic control measures and information dissemination strategies; and (3) 
anticipatory traveler and routing information to guide trip-makers in their travel (Dong et al., 
2006). The system includes several functional modules (for OD estimation, OD prediction, real-
time network state simulation, consistency checking, updating and resetting functions, and 
network state prediction), integrated through a flexible distributed design that uses CORBA 
(Common Object Request Broker Architecture) standards, for real-time operation in a rolling 
horizon framework with multiple asynchronous horizons for the various modules (Mahmassani 
et al., 2004).  
 
The functionality of DYNASMART-X is achieved through judicious selection of modeling 
features that achieve a balance between representational detail, computational efficiency and 
input data requirements.  These features include (Mahmassani et al., 2004): 

 A simulation-based dynamic traffic assignment system, with microsimulation of 
individual user decisions in response to information, and mesoscopic traffic flow 
simulation approach. 

 Multiple user classes in terms of (1) operational performance (e.g. trucks, buses, and 
passenger cars), (2) information availability and type, and (3) user behavior rules and 
response to information. 

 Representation of traffic processes at signalized junctions, under a variety of operational 
controls, including real-time adaptive signal policies and coordination schemes. 

 Consistency between predicted network states, supplied information, and user decisions. 

 State prediction capabilities in a rolling horizon implementation with simultaneous 
multiple horizons. 

 Capability for optimal path assignment and integrated system management. 

 Compatibility with different ITS architectures (e.g. centralized vs. distributed) 

 Distributed software implementation using CORBA for flexible and scalable execution in 
a distributed environment. 

 
The TrEPS platform is comprised of four components: (1) the graphical user interface, or GUI, 
(2) the database, (3) the algorithmic modules that perform the DTA functional capabilities, and 
(4) the set of CORBA programs used to implement the scheduler and the data broker. The 
algorithmic component is the main entity in the system in terms of performing the TrEPS 
functions, and consists of the following modules: (a) state estimation, (b) state prediction, (c) OD 
estimation, (d) OD prediction, and (e) consistency checking and updating. The purpose of the 
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state estimation module (RT-DYNA) is to estimate the current traffic state in the network. The 
state prediction module (P-DYNA) on the other hand provides future network traffic states for a 
pre-defined horizon. The OD estimation module (ODE) is responsible for estimating the 
coefficients of a time varying polynomial function that describes the OD demand in the current 
stage. The OD prediction module (ODP) utilizes these to calculate the demand that is generated 
from each origin to each destination at each departure time interval of the current and future 
stages. Finally, the consistency checking modules are responsible for minimizing the deviation or 
discrepancy between what is estimated by the system and what is occurring in the real world, in 
an effort to control error propagation. 
 
Note that RT-DYNA and P-DYNA are essentially near-identical copies of the same simulation-
assignment code, executed in a different manner and with different dynamic inputs. However, 
the core simulation logic is essentially identical, and is shared with the off-line DYNASMART-P 
DTA tool used primarily for analysis and evaluation to support operational planning decisions. 
Accordingly, modifications made in DYNASMART-P to capture the effect of adverse weather 
would then near-seamlessly be migrated to the on-line DYNASMART-X TrEPS.  Hence, the 
modifications described in the next section are implemented initially in DYNASMART-P.  
   
Capturing the effect of adverse weather on traffic patterns entails both supply side and demand 
side modifications to the model. As a decision support tool, DYNASMART-X could also help 
TMC design weather-related management strategies. Figure 3-1 depicts a high-level view of the 
DYNASMART-X system structure, the interrelationship among the components and modules, 
and the manner in which capturing weather impacts would affect these modules (Alfelor et al., 
2009). 
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Figure 3-1 Incorporating Weather Impacts in DYNASMART-X Structure  
 

3.2 Evaluation for Real-time Application of DYNASMART-X 

 
3.2.1 Maryland CHART Test Bed 
 
Data Sources 
 
This section describes the data available for the Coordinated Highways Action Response Team 
(CHART) network in Maryland.  It also discusses the data quality issues and the data conversion 
for application of DYNASMART-X to the CHART network.  The data includes network 
geometry data, surveillance system attributes, signal timing data, real-time traffic data, planning 
data, and other related information.  Because the calibration and evaluation plan described later 
relies on and makes extensive use of these data, it is important to develop a thorough 
understanding and appreciation of these data elements. 
 
(1) Network geometry and system features 
 
The CHART network was developed using a variety of data sources, including a GIS 
(geographic information system) file, maps, and field visits.  The CHART GIS map file has been 
provided by the mapping center of the bureau of Transportation Statistics (http://www.bts.gov). 
Field visits and internet maps (from Mapquest website) were used to modify and fine-tune the 
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network that was produced from the GIS file. In addition to geographic information, zoning and 
signal information are critical to the network development.  The characteristics of the zones have 
been defined consistent with the traffic analysis zones (TAZs) provided in a transportation 
planning file from Maryland Department of Transportation (MDOT). The signal locations and 
signal timing plans were provided by the Maryland State Highway Administration (MDSHA).   
 
The basic input files for DYNASMART include: network.dat, xy.dat, linkxy.dat, zone.dat, 
origin.dat, destination.dat.  They were prepared using TransCAD and converted to 
DYNASMART using Dynabuilder (developed by the Maryland Transportation Initiative, the 
University of Maryland).   
 
(2) Signal location and control logic 
 
Information pertaining to signal locations and signal timing plans was provided by the Maryland 
SHA.  The location data consists of a hard-copy inventory of signals by county and location 
(given by intersecting street names).  In addition, signal timing information was provided for 
some arterials and corridors located in the CHART network.  This information was provided in 
Sychro file format.   
 
The above files are used to set up the input files (movement.dat, control.dat) in DYNASMART.  
 
(3) Surveillance system 
 
Real-time traffic data is available from sensors at various locations in the network.  Detector 
information is obtainable from the University of Maryland Center for Advanced Transportation 
Technology (CATT), Maryland DOT and Maryland SHA.  Information describing detector 
location, as well as detector data is available from the CATT laboratory webpage, 
http://www.cattlab.umd.edu/cf/index.cfm?js=enabled&bin=trafficData. The detector information 
is frequently invoked in processing and interpreting the real-time traffic data and the actuated 
signal data. 
 
(4) Real-time traffic data 
 
Real-time traffic data is available from Center for Advanced Transportation Technology (CATT), 
Maryland DOT and Maryland SHA.  There are 18 detectors located in the network.  Two 
detectors are located on arterials, the rest are on freeways. 
 
Each detector data file contains timestamp information, detector location, traffic direction, 
vehicle counts, vehicles/hour, speeds, and percent occupancy.  Sensors collect 24-hour data in 5 
minute intervals. The percent occupancy refers to the percentage of time the detector was 
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occupied during the 5 minute interval.  The speed is the average speed recorded over the 5 
minute interval. The vehicle count is the number of vehicles observed during the 5 minute 
interval. 
 
(5) Planning data 
 
There are 111 OD planning zones in the CHART network.  Maryland DOT provided a TAZ 
(traffic analysis zone) file, describing the zonal characteristics of the study area. The OD files 
contain the static OD matrices for three time periods for the study area corresponding to the 
following modes: (1) SOV, (2) HOV2, (3) HOV3+, (4) Truck, and (5) Airport passengers.  In 
addition, the three time periods are categorized as follows: (1) AM Peak, (2) PM Peak and (3) 
Off Peak. 
 
The OD demand files required in DYNASMART include: demand.dat and demand_truck.dat.  
The demands were aggregated over all the modes.  The static OD matrices can serve as initial 
values (or targets) when OD demand is calibrated offline or when OD demand 
estimation/prediction are performed in DYNASMART-X 
 
(6) Other data 
 
Some of the input files for DYNASMART-X are left either empty or with zeroes:  
LinkName.dat, vehicle.dat, incident.dat, workzone.dat, vms.dat, pricing.dat, bus.dat, path.dat, 
pricing.dat, SuperZone.dat.  The information is either not applicable to the CHART network, or 
requires more effort to extract appropriately. 
 
Some of the input files kept the default value provided by DYNASMART or offline calibration 
results: TrafficFlowModel.dat, leftcap.dat, yieldcap.dat, StopCap2Way.dat, StopCap4Way.dat, 
gradelengthPCE.dat, output_option.dat.  Users of course have the opportunity to modify these 
values if other findings or preferences are available. 
 
Other files such as system.dat and scenario.dat, as well as DYNASMART-X featured files 
modules.dat and scheduler.dat correspond to advanced settings.  The corresponding setting 
guidance can be found in the DYNASMART-X User Guide. 
 
Off-line Calibration 
 
(1) Modified Greenshields model calibration 
 
The traffic flow relations on freeways are specified by a modified Greenshields model in 
DYNASMART, which can be calibrated against the flow measurements along freeways to 
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determine the possible parameter values at different congestion levels.  Special emphasis could 
be given to freeway segments with on/off ramp weaving movements.  Currently DYNASMART 
does not specifically model these detailed vehicle movements on freeways, but the parameters of 
the relations can be calibrated to adequately reflect such effects, as DYNASMART allows 
specification of different parameter values for different physical links.  Because of the 
interruption of traffic flow due to signals, the surface arterials are expected to behave distinctly 
from freeways.  Key parameters in the models, such as the jam density, saturation flow and the 
model’s power parameters need to be estimated using data collected from the arterials of interest. 
In the current version of DYNASMART, two types of the modified Greenshields model family 
are available.  Type  one  model  is  a  two-regime  model  in  which  constant  free-flow  speed  
is specified  for  the  free-flow  conditions  and  a  Modified  Greenshield  model  is  specified  
for congested-flow conditions.  The second model uses a single regime to model traffic relations 
for both free- and congested-flow conditions.   
 
The two-regime model is generally applicable to freeways, whereas the single-regime model is 
applied to arterials.  Because of their geometric design and controlled access characteristics, 
freeways can typically accommodate relatively large traffic flow rates (up to 1300vphpl) at near 
free-flow speeds, hence the applicability of the two-regime model form.  Traffic on arterials, on 
the other hand, experiences greater interference and interaction, resulting in more immediate 
deterioration in prevailing speeds with increasing density.  Therefore, traffic behavior on arterials 
is better represented using a single-regime model form.  
 
These models can be estimated by conducting a linear regression analysis using time-varying 
link density and speed data.  The parametric analysis procedure is also implemented to help for 
linear regression analysis.  Alternative model forms require variants of this procedure, or the use 
of other statistical estimation methods.  

 
(2) Time-dependent OD demand calibration 
 
The available OD matrices for the CHART network are intended for planning applications and 
provide only static OD demand information.  Archived real-time link traffic data is combined 
with the static OD information to perform an offline estimation of time-dependent OD demand.  
In addition to providing a representation of the structural characteristics of the dynamic OD 
demand in the CHART network, the resulting offline estimates also serve as a powerful basis and 
starting point for online OD demand estimation and prediction. 
 
A bi-level optimization method has been developed to estimate the time-varying OD demand 
flows.  In the upper level, the sum of squared deviations of the simulated link flows from the 
corresponding observed values is minimized; in the lower level a dynamic traffic assignment 
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problem is solved.  The process is iterated until convergence in the reduction of root mean square 
errors (RMSE) of the estimated link-flows is achieved.   
 
In addition, a multi-objective bi-level optimization model is an extension to the iterative bi-level 
framework proposed above.  Specifically, the upper-level problem is a constrained optimization 
problem, which is to estimate dynamic OD demand matrix, given link flow proportions and/or an 
initial target OD demand matrix, that will best reproduce the observed link flows.  The link flow 
proportions are generated from the lower-level dynamic traffic network traffic assignment, 
namely DYNASMART. In this model, two objectives are considered. The first one is to 
minimize the discrepancy between observed and estimated link flows, and the second is to 
minimize the deviation between the target and estimated demand. 
 
All entries in the time-dependent demand table, i.e. flows between all origin-destination pairs for 
all departure intervals during the study period, should be estimated.  All other parameters of the 
procedure are determined internally, given the actual observations and a time-dependent 
assignment model like DYNASMART.  The estimation will be done for a.m. peak hour of the 
day.  The demand flow will be compared across days of the week. 
 
The data required for the calibration is: 

 Relatively reliable historical demand matrix (static or time-dependent). 

 Real-time traffic data (flow or density) for links with observation. 

 Best values for weights on the objectives, obtained by separate approach. 

 The pertinent MOEs for testing the OD-estimation module is the root mean square errors 
(RMSE) in the estimated traffic flow volumes as described. 

 
(3) Effectiveness of off-line calibration 

 
After completion of the speed-density relation calibration and OD demand calibration, an 
evaluation is needed to assess the effectiveness of the calibration results.  The effectiveness is 
analyzed by comparing the simulated link performance from the DYNASMART simulator with 
the observed link performance. 
 
Link density and link volumes are outputted as simulation results and can be used for 
comparison with sensor data.  The root mean-squared error (RMSE) is taken as the measure to 
assess the effectiveness of calibrated speed-density models and time-dependent OD demand 
matrices which are input to the DYNASMART simulator.   
 
In general, the simulated link performance is less accurate in the peak time (6:00am-9:00am) 
than the off-peak time (4:00am-6:00am and 9:00am-10:00am).  The simulated performance 
matches the observation data better for the freeway links than for arterial links.  In addition, link 
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density exhibits lower error than link volume. The RMSE measure for a certain link performance 
characteristic varies across links, which indicates that the simulation replicates the actual traffic 
states quite well for some of the links while for other links it is less accurate. 
 
The discrepancy is likely the result of several sources.   First, note that these results are only for 
an offline application of a priori calibrated models, and do not take advantage of the online 
calibration and consistency correction functions provide by DYNASMART-X.  In fact, these 
results illustrate the need for an online estimation and prediction capability.  One of the sources 
of discrepancy between simulated and observed data is that the traffic flow model in 
DYNASMART is currently based on the modified Greenshields model, which is static in nature.  
However, the collected sensor data reveals that the model does not always provide a very good 
fit to the observations.  Considerable stochastic variation is evident in the field data.  In such 
situations, although the model provides a “best” estimation of link performance under static 
assumptions, its effectiveness in matching sensor data naturally degrades somewhat vis-à-vis 
actual observations that might exhibit considerable fluctuation.  So the more apparent 
randomness in the observation data, the worse the match is likely to be.  Other sources of 
discrepancy might include the manner in which various traffic controls perform (e.g. fully 
actuated signal controllers).  A third potential source might be that only the discrepancy of link 
densities is minimized in the objective function formulated in the calibration of OD demand 
matrices; this might explain the fact that link density exhibits closer match with observed data 
than the corresponding  values of link volume or link speed.  Other possible reasons could 
include limitation of the inherent route choice model, sensitivity of estimation on network 
configuration and limited quantity and quality of sensor data.  Many of these sources suggest that 
an online approach to calibration, and to estimation and prediction, is likely to considerably 
improve operational performance of the models.  In this case the time-dependent OD demand 
calibrated off-line can serve as a starting point. It is expected that the estimation errors would 
become smaller in on-line application since link performance will be updated quasi-continuously 
to be consistent with real world observations. 
 
In summary, the calibrated speed-density relations and time-dependent OD demand matrices 
have been successfully implemented in the DYNASMART simulator, and generated reasonable 
estimation of traffic conditions which replicate actual observations fairly closely.  The errors 
incurred by the simulation have been analyzed; the majority of these would be alleviated in on-
line application or provide an important basis for future improvement of the research. 
 
On-line Calibration 
 
This section discusses the development of on-line traffic demand estimation and prediction 
modules, which provide time-dependent traffic demand matrices for dynamic traffic assignment 
and associated network traffic simulation. 
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Dynamic origin destination (OD) demand estimation and prediction is an important capability in 
its own right, and an essential support function for real-time dynamic traffic assignment (DTA) 
model systems for ITS applications.  The dynamic OD demand estimation and prediction 
problem seeks to estimate time-dependent OD trip demand patterns at the current stage, and 
predict demand volumes over the near and medium terms in a general network, given historical 
demand information and real-world traffic measurements from various surveillance devices (e.g. 
occupancy and volume observations from loop detectors on specific links). 
 
To provide accurate and robust demand estimation and prediction for real-time dynamic traffic 
assignment in operational settings, the following primary functional requirements need to be 
satisfied: (1) incorporate regular demand information into the real-time demand prediction 
process; and (2) recognize and capture possible structural changes in demand patterns under 
various conditions. 
 
A recursive real-time OD demand estimation and prediction framework (shown in Figure 3-2) is 
briefly described as follows (Zhou and Mahmassani, 2007). 
 
 Step 1: Receive real-time traffic measurements from surveillance system.  
 Step 2: Fetch link proportion data from the DTA simulator.  

Step 3: (OD estimation) Estimate time-varying OD demand matrices involved in the 
current estimation stage using the Kalman filtering method.  

 Step 4: (OD prediction) Predict OD demand over next future horizon.  
 Step 5: Advance estimation stage forward, and then go back to Step 1. 
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Figure 3-2 Illustration of Recursive Estimation-Prediction Implementation 
 

j  = index for origin-destination pairs, j=1,…, Nod 
τ = index for aggregated departure time intervals, τ =1, 2, … 
k  = index for stage period, k  = 1, 2, 3, …  

),(  j   = structural demand deviation of from a priori estimate for OD pair j with 

departure time τ 

 

Evaluation and Applications 
 
(1) Evaluation of estimation capability 

 
The offline calibrated link-specific speed-density relations are used as traffic flow models for the 
network.  The calibrated time-dependent OD demand matrices are used as the historical demand 
matrices, which constitute essential input to the on-line OD estimation and prediction. With the 
adjustments induced by analyzing sensor data using Kalman filter technology, the demand level 
for each OD pair is estimated. The estimated demand incorporates the historical information and 
at the same time recognizes the real-time information implied by the incoming sensor data to 
accommodate the day-to-day changes in traffic demand.  It is the estimated demand matrices that 
load vehicles to the network in traffic estimation. 
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The RMSEs of density, volume and speed for each of the observed links for different estimation 
time periods are calculated.  Link density and link volume are processed at 5-minute intervals 
and link volume is obtained from traffic flows mid-block on links instead of link outflows, in 
order to have meaningful volume values. Compared to the off-line calibration results, the 
RMSEs for the online estimation are in general lower than those obtained with offline estimation 
alone, which means that link density and volume could be estimated better in online applications.  
Whereas the offline simulation would simply load predetermined OD demand tables, the online 
estimation keeps receiving real-time data, which it uses to update quasi-continuously the internal 
representation of the system state by means of consistency checking and OD estimation/ 
prediction.   

 
(2) Evaluation of prediction capability 

 
The traffic prediction in DYNASMART-X is implemented based on a rolling horizon approach.  
In this framework, the planning horizon is subdivided into several overlapping stages.  The 
consecutive stages overlap at fixed intervals, the length of each is referred to as the roll period.  
The stage length (or horizon) is denoted by h and the roll period is denoted by l.  In the 
experiment, h is set to 20 minutes and l is set to 5 minutes.  The roll period l is the short-term 
future duration for which the available forecasts of OD desires are considered to be reliable.  In 
the remaining time of the stage, (h–l), forecasts of OD data are expected to be less reliable.  
Therefore, the short term prediction should be more reliable and precise than the long term 
prediction.  For a duration A, the traffic status is predicted first time at Stage m, second time at 
Stage m+1, third time at Stage m+2, and fourth time at Stage m+3.  It is expected that the 
prediction is less accurate in Stage m than Stage m+3.   
 

minutes 5l

minutes 20h

 

Figure 3-3 Rolling Horizon Procedure 

 
To compare the accuracy of predictions, the link performance (density, speed, or volume) is 
considered through four groups which correspond to prediction obtained at four different times 
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(corresponding to consecutive stages).  In other words, the first time prediction indicates the 
result from the remotest prediction horizon, whereas the fourth time prediction is obtained from 
the nearest prediction horizon; and so on.  The results indicate that the discrepancy of the first 
time prediction is in general larger than the second, third and fourth times.  The fourth time 
prediction is closest to the actual observed value.  This verifies that the short-term predictions in 
the present rolling horizon procedure are more reliable than the longer-term predictions due to 
the greater reliability of more recent information.   

 
(3) Travel time information 
 
Pre-trip as well as en-route travel information is an Advanced Traveler Information System 
(ATIS) user service. Its objective is to inform travelers of traffic and transit conditions, so they 
can best assess travel options before selecting a route, mode, time-of-day, or deciding whether to 
make a trip. DYNASMART-X can provide estimations and predictions of network flow patterns 
and travel times in response to various contemplated traffic control measures and information 
dissemination strategies.  
 
Based on the predicted OD demand and dynamic assignment simulation result from PDyna, 
time-dependent link travel times and turning penalties over the prediction horizon can be 
obtained. If users specified a path, the predictive travel times for different departure time 
intervals within the prediction horizon are displayed to assist users in making route choice and 
departure time choice. If users are interested in the travel times between an OD pair, the time-
dependent point-to-point travel times as well as the associated shortest paths between the OD 
pair will be provided. 
 
 

3.3 Overview and Applications of DynaMIT 

 
This section discusses field applications of DynaMIT (Ben-Akiva et al., 2002; Balakrishna et al., 
2006), a real time computer system designed to effectively support the operation of Advance 
Traveler Information Systems (ATIS) and Advanced Traffic Management Systems (ATMS) at a 
Traffic Management Center (TMC). The framework of the system is shown in Figure 3-4. The 
field implementations made in Hampton Roads, VA and Los Angeles, CA studies are discussed. 
Note that the DynaMIT networks can be easily converted to DYNASMART and hence be 
considered in the evaluation of the weather-responsive traffic response models. 
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Figure 3-4  DynaMIT Framework 

 
3.3.1 Hampton Roads, VA 
 
The University of Virginia (UVA) team evaluated the performance of the DynaMIT-R program 
in off-line traffic estimation and prediction (Phase I, 2004) and online estimation and prediction 
capabilities (Phase II, 2006) in Hampton Roads, Virginia (Park et al., 2004; Park et al., 2006).    
 
Network of Phase I and II 
 
The Hampton Roads network is composed of three freeways segments: I-64 between Bay 
Avenue and the Virginia Beach-Chesapeake City Limits, I-64 forming the outer loop, I-564 
between Terminal Boulevard and I-64, I-264 between Broad Creek and Rosemont Road, and 
entire I-664.  The same network was used for Phase II.  
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Phase I Traffic Data Sources  
 
Two sets of databases were used for DynaMIT supply parameter calibration and OD demand 
flow estimation. The first dataset was used for OD estimation and calibration of DynaMIT and 
the second dataset for both calibration and validation of DynaMIT.  For each of years 2001 and 
2003 data, two datasets were prepared for supply parameter calibration and historical OD 
estimation. The dataset for the supply parameter calibration was composed of 10-minute 
aggregated double-loop detector data with the accuracy of speed and volume data. The dataset 
for historical OD estimation dealt with volume data from all Smart Travel Laboratory (STL) 
detectors and Traffic Management System (TMS) stations.   
 
Datasets of Phase II 
 
Traffic counts and speed data were obtained from the traffic sensor stations. For the case of 
supply parameter calibration, only data from the stations configured with double loop detectors 
was used to ensure accurate speed measures for supply parameter calibration. In addition, traffic 
data including travel times were used in order to measure the performance of DynaMIT.  
 
Since there existed stations with some missing detector data and inflated by the total number of 
detectors, and a number of sections where the right most lane or the auxiliary lane carries very 
low volumes or very high volumes depending on the distance to adjacent interchange and flow 
characteristics, lane utilization factors were introduced for computing traffic counts of detectors 
with missing data that could be highly overestimated or underestimated on the basis of equal lane 
distribution assumption. In the calibration of supply parameters, it was found that they were 
slightly revised to better represent field traffic conditions by incorporating the lane utilization 
factors.  
 
Calibration and Validation of Supply Parameters (Phase I and II) 
 
The major steps of supply parameter calibration include segment classification, determination of 
three key parameters (i.e., capacity, free flow speed and maximum density under free flow 
speed) and curve fittings. First, the segments in the test network were categorized into several 
homogenous groups according to their characteristics such as corridors and roadway geometric 
characteristics and number of lanes. A preliminary analysis through the visual inspection of flow 
and speed data plots was performed to justify the segment classification; and final segment 
groups were defined with field data availability. Capacity and free flow speed of each segment 
groups was determined on the basis of field data and recommendations from the Highway 
Capacity Manual (HCM). The capacities under inclement weather conditions were estimated to 
be 95% of those under normal conditions and free flow speed was reduced by 2 mph from 
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normal conditions. Maximum densities under free flow conditions were determined using HCM 
level of service A and B densities.  
 
Since speeds and flows are relatively accurate compared with densities less reliable mainly 
because they are estimated from occupancies, the UVA team calibrated this two regime flow-
speed function instead of speed-density function. Hence, the supply parameters were estimated 
with traffic sensor data from the first dataset, the estimated parameters were validated with the 
second dataset. Using the sensor data of double loop detectors from the second dataset, the 
quality of the supply parameters was visually verified and it was found that the supply 
parameters fit well.  
 
Demand Calibration (Phase I and II) 
 
The objective of demand calibration is to estimate the historical OD flows and the variance-
covariance matrix (varcov) for the study network. For the purpose of demand calibration, the 
planning version of DynaMIT (i.e., DynaMIT-P) was used to compute the assignment matrices 
during the OD optimization. The historical OD estimations were done for two periods: off-peak 
(10:30 AM to 12:30 AM) and peak (4:30 PM to 6:30 PM) periods with normal days for the 
estimation of stable historical OD flows at relatively quick convergence.   
 
Initial OD matrix was obtained by a double-constrained gravity model since the Hampton Roads 
network is a well-bounded freeway system where the total trips in entering and exiting the 
freeway system with on ramps as origins and off ramps as destinations should be close. Since the 
relative reliability of traffic sensor and OD pair demands were not known, calibration process 
was started by providing higher weights to the OD pairs having low counts and use of the data 
quality for the stations. Three normal days were used for demand calibration. The following 
points summarize the procedure followed in the demand calibration process for both Phase I and 
Phase II.  
 

1. DynaMIT-P program was run with traffic counts from a normal day using the initial OD 
matrix obtained from a gravity model. Once newly estimated assignment matrices from 
DynaMIT-P were obtained, the estimated OD matrix was externally optimized via 
MATLAB software to ensure its convergence. 

2. By replacing the initial OD with the OD obtained at the end of step 1, DynaMIT-P was 
run for the same day again. The estimated OD from DynaMIT-P was again externally 
optimized via MATLAB. 

3. Using the new OD matrix after step 2, DynaMIT-P was run with a second day by 
following the same procedure as in the above tow steps. An updated OD was obtained.  

4. At the end of the second day, varcov matrix was estimated. 
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5. Using the updated OD matrix obtained at step 3 and varcov matrix at step 4, DynaMIT-P 
was run for a third day. 

6. At the end of third day, the obtained estimated OD was used as historical OD and varcov 
matrix was computed again.   

 
Both calibration results for off-peak and peak periods showed that the Root Mean Square 
Normalized (RMSN) errors were decreasing consistently for the last three runs and then showing 
similar values for the last two runs. Also, high correlation between the simulated and actual 
sensor counts was observed to show the comparison of counts for the last day of the calibration 
for both periods. Hence, OD was converged for the off-peak and peak conditions and considered 
as a reliable historical OD matrix.  The same was true to the results of Phase II.   
 
Evaluation of DynaMIT-R Off-line Performance 
 
In Phase I, DynaMIT-R (real time version) was implemented with the five different scenarios 
consisting of two off-peak and two peak periods, and a VMS case. For each of non-peak and 
peak periods, five normal days were evaluated for the performance of DynaMIT-R under normal 
conditions, and a mix of normal, bad weather, and incident days were evaluated for such mixed 
conditions. The VMS scenario evaluated the impact of diversion due to the implementation of 
VMS display of incident conditions.  As a result, it can be concluded that DynaMIT-R fairly well 
predicts traffic conditions for all the scenarios studied and is also capable of giving guidance to 
the users of the surface transportation system with the use of VMS functionality.  
 
Online Evaluation (Phase II) 
 
Online evaluation for three days was conducted with all required data provided in real-time by 
various sources such as traffic sensors (e.g., loop detectors), CCTV cameras, Hampton Roads 
Smart Traffic Center (HRSTC) operators, etc. Through the sources, traffic counts, speed and 
incident information were fed into the DynaMIT program during online evaluation. In addition, a 
probe vehicle was employed to obtain field travel times on a few key routes. The other key 
element was to achieve faster computation on given estimation and prediction intervals. This 
would help DynaMIT operator have more time to implement various strategies, especially under 
incident conditions.  
 
With the newly estimated 24-hour historical OD and supply parameters, online evaluation of 
DynaMIT was implemented. Traffic sensor counts were aggregated into five minute counts and 
fed into the DynaMIT. The incident management interface provided an incident alert as soon as a 
new incident is being identified and recorded. With the incident alert and the use of traffic 
surveillance camera, an operator can assess the condition of incident and enter the incident 
information to the DynaMIT using the enhanced Java Road Network Editor (jRNE) incident 
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input interface. Since the implementation of DynaMIT was an online-open loop evaluation, there 
was no feedback from DynaMIT to the field. The performance measures of RMSN errors for 
volume counts, absolute values of speeds and travel times were considered for comparing the 
simulated results from DynaMIT with the actual field conditions.  
 
From the online evaluation, the MATLAB enabled DynaMIT, which enhanced OD estimation 
procedure, significantly improved its computation runtime. Average runtime and maximum 
runtime were reduced by 44% and 25%, respectively. This would certainly provide more time for 
an operator at a TMC to better estimate DynaMIT parameters, especially during incidents, and to 
better evaluate various strategies for proactive control of traffic. 
 
DynaMIT showed good performance with the RMSN errors of 0.15 ~ 0.25 in the estimation of 
traffic sensor counts, while those of predicted traffic sensor counts ranged from 0.25 and 0.4. 
These errors were fairly consistent regardless of network congestion levels. The prediction errors 
were a bit worse than those obtained at the off-line evaluation during the Phase I study. The 
performance of traffic counts estimation during incidents was as good as those shown during 
normal conditions, except for a case with sever incident condition where the estimation of 
incident parameters was not done accurately. As such, it was found that DynaMIT can 
adequately model incident conditions as long as incident parameters are properly determined. 
 
When speeds and travel times were used in the evaluation of DynaMIT’s estimation and 
prediction capabilities during online evaluation, it was observed that both estimation and 
prediction show some discrepancies during congested conditions even though traffic counts 
matched quite well. This clearly indicates traffic count is not a very sensitive measure in the 
evaluation of DynaMIT’s estimation and prediction capabilities. In addition, it suggests that 
supply parameters may not be optimal for all the segments. Obviously, this was not a limitation 
of DynaMIT, but it was due to lack of actual field traffic data. Therefore, more efforts in the 
calibration of supply parameters should be given wherever possible. As traffic data is not 
available for each segment of the network, supply parameters of those segments were obtained 
from similar segments. 
 
 
Challenges Encountered (Phase I and II) 
 
The following section includes the challenges that the project teams encountered through both 
studies and their discussions related with OD estimation and update of varcov matrix.   
 
Phase I:   

 Fluctuations in OD flows: The DynaMIT-P (planning version) program estimates OD 
matrix sequentially, in other words, the ODs for entire 24 hours are not optimized 
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simultaneously. The sequential estimation methodology caused huge fluctuations over 
time in the estimated OD pairs. Hence, it was observed that for some OD pairs the 
estimated demand varies unrealistically, resulting in poor estimation of auto regressive 
parameters.  

 Updates on variance-covariance matrix (varcov.dat file): The DynaMIT-R program used 
in this study used a single value for each sensor or OD demand pair, regardless of the 
number of time intervals. In reality sensor data could be missing for short-term periods 
due to malfunction in communication or other errors. Thus, varcov value needs to be 
updated according to sensor data quality. A solution to this is to update the varcov values 
according to data quality of a particular day.   

 
Phase II:  

 Overestimated ODs: Significantly higher demands were assigned to the certain 
destination links and resulted in vehicle back-ups and huge congestions. Although the 
MIT team implemented a quick fix, that simply simulated DynaMIT with a newly 
estimated OD or retained historical OD. Ideally, this challenge should be addressed by 
considering link capacity during OD estimation.  

 Updating Varcov matrix: The Varcov matrix plays a critical role in the OD estimation. 
Varcov values of certain OD pairs were fixed during historical OD estimation (or demand 
calibration) to prevent DynaMIT estimating unrealistic demands (i.e., exceeding 
destination link capacity) for those OD pairs. Obviously, this was not a solution but one 
of the acceptable remedies available. In addition, due to unrealistic fluctuation of OD 
flows, they were redistributed.  

 
3.3.2 South Park region of Downtown Los Angeles, CA 
 
The study network in South Park region of downtown Los Angeles consists of two major 
freeways (I-10 and I-110) and a dense network of arterial streets. It is represented in DynaMIT 
by a set of 243 nodes and interconnected 606 directed links, which are subdivided into 740 
segments to model changing section geometry within a link. Half of more than 200 arterial 
intersections in the network consist of signalized intersections. Signals along the major arterial 
segments are synchronized (Wen et al., 2006).  
 
Demand Calibration 
 
There was ground work before the demand calibration as follows: 

 Path choice set generation 

 Defining period of study 

 Simplifying assumptions 
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The path generation process attempted to capture all reasonable and feasible paths for each OD 
pair. To this end, a suitable path set was obtained using 20 random draws to complement link-
elimination based shortest paths from every link on the network to every destination node. In the 
course of this process, a path with a higher freeway percentage among two paths with same 
travel time was preferred and all paths longer than the shortest path by more than 20% were 
eliminated between each OD pair to eliminate many redundant and unreasonable paths. Manual 
inspection of various OD pairs confirmed that nearly all practical paths were included in the path 
choice set, which finally contained total of 44,224 OD paths for 3745 OD pairs. 
 
Since DynaMIT would be deployed for real-time traffic estimation and prediction-based 
guidance generation on the site, the period of off-line calibration encompasses entire 24 hour, 
excluding 3 hours from midnight to 3:00 AM when arterial data was not available. The 21 hour 
calibration period was divided into 84 intervals of 15 minutes each, which was decided 
considering computational efficiency and the fact that sensor counts do not exhibit significantly 
large variations for shorter interval.  
 
Several simplifying assumptions were made in order to accommodate practical considerations 
and data availability. The covariance matrices of error between the estimated and a-priori OD 
flows (Wh) and error between simulated sensor counts and observed counts (Vh) were assumed to 
possess a diagonal structure implying that the sensor measurement errors and direct OD 
measurement errors are uncorrelated. The auto-regressive factors were also assumed to be 
diagonal suggesting that deviation of OD pair from its historical values depends only on the 
deviation of same OD pair from its historical values in previous intervals.  
 
Since it was observed that availability of many alternative paths between a freeway-to-freeway 
OD pair were forcing an unreasonably high proportion of drivers to use part-arterial-based path, 
path-size logit model was applied to calculated the probabilities of selecting various routes with 
utility of given path. To resolve this issue, optimal route choice parameters were found.  
 
OD estimation, Calibration, and Validation 
 
Five days were selected spanning one entire month and all days of week (Monday-Friday) to 
carry out the sequential calibration process (Figure 3-5). Generalized Least Square Estimation 
was used to estimate OD matrix interval by interval. Very high weights were applied to sensor 
counts and very small weights to seed OD flows so that they could extract all possible 
information from sensor counts instead of meaningless estimate of seed OD flows for the first 
day of calibration. Once first day was completely estimated, error covariance matrices were 
obtained. Calibration procedure for the second day was exactly similar to the first day, except the 
calculated error covariance matrix used in GLS formulation. This approach was repeated in the 
third day, fourth day and fifth day, every time recalculating the error covariance matrix and 



Final Report  4499  
 

 

updating historical OD matrices and experienced travel times. The performance of calibration 
was verified with the estimated error statistics and graphical comparisons of simulated and 
observed counts for the same periods.   
 

 

Figure 3-5  Within-Day and Day-to-Day Process 

 
After calibration was done for five days, auto-regressive (AR) factors were calculated for 
DynaMIT’s prediction capabilities. The calibrated AR factors were obtained by regressing the 
deviations of estimated OD flows for all five days with corresponding historical OD flows with 
auto-regressive factor equation introduced in the report and presented by the group of OD pairs 
classified by their size.   
 
Validation were employed to assess whether the calibrated set of historical OD matrices, 
historical travel times, and variance-covariance matrices continues to perform satisfactorily when 
supplied with fresh input, as would be the case in an on-site application. For the validation for its 
estimation and prediction performance, another day of new data which was not used in 
calibration process was selected. It was observed that errors during validation runs were 
comparable to those obtained during calibration process within acceptable limit in the validation 
of its estimation performance.  
 
Prediction tests for calibrated AR parameters were started by estimating OD flows for selected 
time intervals for both days. Five intervals were picked uniformly during the day to test the 
effectiveness of the calibrated AR factors. Then, deviations in the OD flows for next fifteen 
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minute period (one-step prediction) were predicted using estimated OD flows for each time 
period. Similarly, prediction for next fifteen minute (two-step prediction) were performed using a 
set of estimated OD flows from past intervals, and just predicted OD flow for previous interval 
was calculated. In the same manner, further step predictions up to next one hour were carried out. 
It was observed that errors during validation runs were comparable to those obtained during 
calibration process, and were within acceptable limit. Therefore, it was validated that the 
historical (calibrated) parameters were able to replicate weekday data. Several variations of the 
OD prediction method were tested, and one based on moving averages was found to yield the 
most consistent patterns.  
 
Off-line Calibration of Speed-density Relationships 
 
Link performance functions in much of the literature are calibrated by fitting a curve to the 
observed traffic data. In the previous approaches, the calibration variables were limited to the 
speed-density function parameters. However, the optimization depends on several other DTA 
inputs such as OD flows and route choice model parameters. The values selected for these other 
inputs and parameters thus impact the outcome of the supply calibration. One may thus iterate 
between demand and supply calibration steps until convergence (as defined by the modeler) is 
reached. This iterative procedure can be time-consuming and inefficient, as only a subset of the 
available data is used in either calibration. 
 
Balakrishna et al. (2007) presented a calibration framework that allows the simultaneous 
calibration of all supply and demand parameters and unknown inputs typical to DTA models (e.g. 
OD flows, route choice parameters, capacities, speed-density parameters) using any available 
data (e.g. counts, speeds, densities, queue lengths). Thus all significant DTA inputs and 
parameters may be estimated simultaneously, providing the most efficient result. The problem is 
solved with the SPSA algorithm. 
 
This calibration approach provides a unique advantage. Since the parameters of the speed-
density functions for all segments are estimated simultaneously, the function parameters for each 
segment can be calibrated to better fit the traffic data at the network level. 
 
The above method has been applied to the Los Angeles network (Balakrishna et al., 2008), an 
area of heavy traffic throughout the year owing to commuters and the regularity of sporting and 
convention special events. The numerical results show that the estimator, denoting supply 
calibration using count data, results in a significant improvement in replicating the counts and 
traffic dynamics (speeds) in the area. Further, the increased accuracy is reflected on both freeway 
and arterial links. In the base case, the speed-density parameters were fitted at individual sensor 
locations and attributed to all segments in the respective groups. 
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On-line Calibration of Speed-density Relationships 
 
In the current DTA framework, only the OD flows are calibrated on-line. In most cases, the 
approach to the problem of calibration of the other parameters has been to calibrate the 
simulation models off-line using a database of historic information. The calibrated parameter 
values are then used in the on-line simulations. The calibrated model parameters, therefore, 
represent average conditions over the period represented in the data. Models that were calibrated 
this way may produce satisfactory results in off-line evaluation studies, which are concerned 
with the expected performance of various traffic management strategies. However, this may not 
be the case in real-time applications, which are concerned with the system performance on the 
given day. If the model that was calibrated off-line is used without adjustment, the system is not 
sensitive to the variability of the traffic conditions between days, which are the result of 
variations in the parameters of the system, such as weather and surface conditions. Such 
variations may cause traffic conditions to differ significantly from the average values. Thus, the 
predictive power of the simulation model may be reduced. To overcome this problem, real-time 
data can be used to recalibrate and adjust the model parameters on-line so that prevailing traffic 
conditions can be captured more accurately. The wealth of information included in the off-line 
values can be incorporated into this process by using them as a priori estimates. 
 
Tavana and Mahmassani (2000) use transfer function methods (bivariate time-series models) to 
estimate dynamic speed–density relations from typical detector data. Huynh et al. (2002) extend 
the work of Tavana and Mahmassani (2000) by incorporating the transfer function model into a 
simulation-based DTA framework. Qin and Mahmassani (2004) evaluate the same model with 
actual sensor data from several links of the Irvine, CA network. 
 
Antoniou et al. (2007) formulate the problem of on-line calibration of a DTA model as a 
nonlinear state-space model that allows for the simultaneous calibration of all model parameters 
and inputs. The methodology is generic and flexible and does not make any assumptions on the 
underlying model structure, the parameters to be calibrated or the type of available 
measurements. Because of its nonlinear nature, the resulting model cannot be solved by the 
Kalman filter, and therefore, nonlinear extensions are considered: the extended Kalman filter 
(EKF); the limiting EKF (LimEKF); and the unscented Kalman filter. The solution algorithms 
are applied to the on-line calibration of the state-of-the-art DynaMIT DTA model, and their use 
is demonstrated in a freeway network in Southampton, U.K. The LimEKF shows accuracy that is 
comparable to that of the best algorithm but with vastly superior computational performance. 
Antoniou et al. (2007) present an application of their on-line DTA calibration methodology using 
data from a freeway network in Southampton, UK. The study demonstrates the performance 
gains that can be obtained through the dynamic, simultaneous calibration of the speed-density 
relationships and other supply-side parameters. 
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On-line Evaluation 
 
For the on-line evaluation, DynaMIT was run in on-line, real-time mode, and the sensor files are 
used to simulate the surveillance interface setup at LADOT. Through the preliminary studies, a 
few promising results were achieved. Firstly, estimated counts generally stay close to the actual 
counts for the entire day. Secondly, predicted counts also follow the same trends and most of 
them are reasonably accurate. This indicates that estimates reported by DynaMIT through its 
traffic simulation are likely to reflect the real traffic condition, and the predictions of DynaMIT 
are likely to foresee the evolving traffic condition. The preliminary evaluation also illustrated 
that one-step prediction (obtained just one interval ahead of the real-time) is in general better 
than two-step prediction. It indicated that the accuracy of prediction will deteriorate over time.  
 
Other than the areas introduced above, there are more areas that DynaMIT was tested and 
applied as a decision-aid tool for traffic diversion particularly in Switzerland. The scope of its 
application was the development of diversion strategies with a VMS-based system. 
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    4. Methodology  
 
This section presents the overall conceptual framework for capturing weather effects in a DTA 
model, representation of weather data, and the principal supply-side elements that would affect 
the representation of adverse weather effects on traffic flow propagation and system performance. 
The demand-side elements that determine user responses to weather and related information and 
control measures are also presented.  
 

4.1 Conceptual Framework  

Capturing the effect of adverse weather on traffic patterns entails both supply side and demand 
side modifications to existing dynamic traffic assignment (DTA) tools. These weather-related 
elements and their interaction with current DYNASMART functionalities are shown in Figure 
4-1 (Dong et al., 2010a). In this study, we mainly focus on two elements, namely, weather 
impacts on supply-side relations and parameters and user response to weather information and 
control actions. 
 

 

Figure 4-1 Demand- and Supply- Side Impacts of Adverse Weather 
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4.2 Weather Data Representation  

 
Several TMC’s across the nation, especially in flood-prone areas (e.g. Houston/Harris County’s 
TranStar TMC) are now connected to weather information and forecasting systems.  A suitable 
interface system could help a TMC obtain weather data automatically and simultaneously in real-
time from weather stations.  The required weather-related inputs for traffic estimation and 
prediction purposes will be the type, severity and duration of a particular weather condition, and 
the geographic area influenced by the reported/predicted adverse weather. The specific 
configuration of the communication architecture and media from weather stations to the TMC is 
not especially problematic, from the standpoint of real-time performance, because weather data 
is usually updated only every hour or so, and does not generally fluctuate every minute.  
 
The weather data can be queried from well-established organizations measuring, recording and 
storing temperature, dew point, wind, altimeter setting, visibility, sky condition, precipitation, 
and so on. In particular, precipitation type, precipitation intensities (inch/h) and visibility 
readings (mile) were used in previous studies, including the FHWA Report (Hranac et al., 2006). 
Therefore, three link-specific weather parameters can be specified through the GUI (Graphical 
User Interface) or input file, that is, visibility, rain intensity and snow intensity. The default 
values of these parameters correspond to clear weather conditions. Based on the regional weather 
conditions, the user could modify all or some of the weather parameters of the links within the 
impacted area.  This will then allow incorporating the effect of the specified inclement weather 
condition on the estimated/predicted traffic patterns. The procedures devised to capture this 
impact are discussed next.   
 
 

4.3 Modeling Weather Impacts on Supply Side Relations and Operational 

Parameters 

 
The principal elements in the simulation that would be affected by adverse weather, and hence 
may provide a mechanism for capturing weather effects on traffic patterns, include the following: 
 

 Speed-density model for freeway sections (and ramps)  
Both the functional form and the parameter values (free mean speed, jam density, 
breakpoints for multiple regime models) may be affected by weather, and may be affected 
differently by the characteristics of different weather instances. The above-mentioned FHWA 
report (Hranac et al., 2006) summarizes changes in the so-called fundamental diagram 
observed at a limited number of locations (e.g. Twin Cities, Minnesota).  
 

 Speed-density model for signalized arterials and unsignalized approaches 



Final Report  5555  
 

 

Empirical evidence collected through the calibration experience with DYNASMART in 
various cities strongly suggests different functional forms for the speed-density relations for 
arterials than for freeways. For instance, the latter exhibit distinct multi-regime features that 
are not present in arterial data. In addition, there is considerably more variation in both 
functional form and parameter values for arterials than for freeways. 

 

 Service rates and section capacities for freeways and ramps 
It is not well understood in the traffic simulation community that service rates and capacities 
play at least as important a role as the speed-density relation parameters in governing traffic 
flow under highly congested conditions, when queueing phenomena become critical in 
determining traffic propagation. Hence specifying these parameters correctly is an essential 
aspect of calibrating these models. Such parameters will naturally be affected by weather of 
varying characteristics. Reductions ranging from 5% to 35% have been reported in the 
literature, and provide a starting point for the modifications addressed in this study. 

 

 Saturation flow rates, section capacities and turning service rates at signalized junctions 
Under normal weather condition, the default values of saturation flow rates are consistent 
with accepted highway capacity manual practices. Yet, these values will be dramatically 
affected by inclement weather conditions. 

 

 Saturation flow rates and operational parameters at unsignalized junctions 
Controls at unsignalized junctions include yield signs, stop signs and roundabouts. Weather 
effects on these facilities are likely to be of greater magnitude than at signalized intersections 
given the reliance of unsignalized junctions on human interaction in sharing the right of way, 
which becomes more difficult under adverse weather.  

 

 Operational characteristics associated with incidents and their impact 
Adverse weather magnifies the impact of traffic incidents, increasing their severity and 
possibly their duration as well. It is suggested that higher severity, longer duration, and 
possibly greater frequency of occurrence, be used in devising incident scenarios under 
adverse weather.  

 

 Operational characteristics of work zones and other special events 
Work zones typically affect the maximum speed as well as the capacity of the directly 
affected sections, as well as those that carry traffic in the opposite direction for certain work 
zone geometries (see DYNASMART-P User’s Manual, Mahmassani et al., 2006). Given the 
significance of weather events that occur in conjunction with work zones in most parts of the 
country, it would be important to revisit the entire approach to modeling work zones in order 
to enable better representation of traffic flow in and around work zones under adverse 
weather conditions.   
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The inclement weather impact on each of the above-mentioned parameters can be represented by 
a corresponding weather adjustment factor (WAF), as follows: 

 svrvsrvFi  543210 

 

(4-1)

where 

iF    weather adjustment factor for parameter i 
v    visibility 
r    precipitation intensity of rain 
s    precipitation intensity of snow 

543210 ,,,,,   coefficients 

 
The parameters are adjusted accordingly if a link is specified as an impacted link. Namely, if link 
a is impacted by inclement weather that is characterized by (v, r, s), a set of WAFs can be 
calculated for link a based on Equations (4-1) and (4-2). Therefore, all the parameters can be 
adjusted by the corresponding WAFs. For example, the saturation flow rate under inclement 
weather is represented as follows:  

 ifi fFf
i
'

 

(4-2)

where 

'if    saturation flow rate under inclement weather  

if
F    weather adjustment factor for parameter if  

if    saturation flow rate under clear weather  

 
Therefore, this representation offers a flexible approach to capturing weather effects on traffic 
flow propagation, allowing sensitivity to a wide range of conditions, and capability to 
characterize varying types of traffic behaviors under adverse weather conditions. 
 

4.4 Modeling Demand Side Behaviors and Parameters 

The demand side dimensions and parameters that determine how traffic patterns may be affected 
by adverse weather consist of two principal categories: (1) those that affect the dynamic OD 
pattern in the network, and (2) those that affect the distribution of flows in the network, 
especially in response to information and/or various traffic controls. Hence, changes in 
destination, departure time or trip cancellation (and, if dealing with a vehicle rather than person 
OD pattern, changes in mode choice as well) would be reflected in the dynamic OD pattern. On 
the other hand, route diversions in response to information, route choice decisions based on pre-
trip or en-route information, response to various advisory messages and the like would be in the 
second category. While, of course, we can view the first category as resulting from individual 
decisions as well, modeling such mechanisms directly would be considerably more complicated 
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(and require a much richer, and unfortunately lacking, empirical survey basis) than trying to 
capture their net result by inferring the dynamic OD pattern. 
 
(1) Changes in dynamic OD pattern 
  
One of the advantages of an on-line system is its ability to adaptively estimate and predict OD 
and associated flow patterns as the latter are unfolding. The hybrid Kalman Filter approach with 
structural temporal effects developed for DYNASMART-X (Mahmassani and Zhou, 2005), 
along with the consistency checking and updating modules, are intended to capture changes in 
dynamic OD patterns resulting from weather-related adjustments in tripmaking. As such, both 
the overall levels of demand, their distribution across OD pairs as well as over time should be 
captured by the existing system. The main limitation today is that the traffic models may not 
capture traffic propagation correctly under adverse weather, hence introducing a potentially 
important source of error in the overall estimation and prediction process (which will affect the 
OD predictions as well since the latter are linked to the observed measurements through the DTA 
model and resulting link proportion matrix).    
 
In addition, user response to pre-trip or en route information would also affect dynamic OD 
pattern, including: (1) Leaving earlier or later; travelers might adjust their departure times due to 
inclement weather, that is, the decision to leave earlier (e.g. returning home on a day when bad 
weather is forecast) or later (e.g. waiting out a bad storm). (2) Real-time mode choice; like 
departure time choice, real-time mode choice is a pre-trip decision that considers weather-related 
measures in the context of Integrated Corridor Management (ICM) strategies. (3) Trip chaining 
and tour alteration; adverse weather may lead to changes in the sequence of stops along a tour, or 
may lead to adding or deleting stops, e.g. when stopping unexpectedly to pick up a child at 
school early in anticipation of a bad storm.  
 
(2) User responses to information and control measures  

 
This category of demand side phenomena is of critical importance to the ability of 
DYNASMART-X to serve as an effective decision support tool for traffic management under 
adverse weather conditions. The principal types of decision situations include the following: 
 

 Response to variable message signs 
 

New message types and their attributes are introduced in DYNASMART, as well as the 
behavioral rules that govern the responses to these messages, taking into consideration the 
attributes of the driver. Note in this regard that the mesoscopic modeling approach adopted in 
DYNASMART is especially well suited to this type of representation. The fact that 
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individual decision entities are retained in the simulation effectively gives the model the 
same capabilities as a microsimulation tool from a travel behavior decision standpoint.   

 

 Route choice under adverse weather and related information 
 
A new attribute associated with weather-related risk is included in the generalized cost. Users 
with varying degrees of risk aversion would choose their routes accordingly. Therefore, the 
criteria for the driver’s route choice include monetary cost, travel time and travel penalty 
(due to low visibility, or precipitation). Accordingly a generalized cost is specified in 
Equation (4-3) to reflect these attributes:   

 ptcGC  210 

 

(4-3)

where 
GC   generalized cost     [$]  
 c   monetary cost      [$] 
 t   travel time      [min] 
 p   travel penalty due to adverse weather   [min] 

 210 ,,   coefficients      [-, $/min, $/min] 

 
The coefficients indicate the relative importance of travel time, cost and weather condition. The 

value of time is expressed as 
0

1


 VOT . Similarly, travelers’ valuation of weather impact is 

defined as 
1

2


 p  , that is, the traveler’s risk taking regarding the adverse weather conditions; 

by default, 1p . Therefore, the generalized travel time can be expressed as follows:  

 ptcGT p
VOT

 

 

(4-4)

where 
GT    generalized travel time     [min] 

VOT    value of time      [$/min] 

p   risk taking preference     [-] 

 

4.5 Traffic Advisory and Control Strategies 

 
When the estimation and prediction for a given horizon is completed under inclement weather, 
the predicted information provided by DYNASMART-X can form the basis for intervention by 
operators at a TMC, in the form of traffic control actions or advisory/mandatory guidance for 
drivers. If necessary, such actions or strategies can be disseminated to drivers through VMS or 
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other media to alleviate road weather impacts. This section discusses the traffic advisory and 
control strategy features in the DYNASMART program.  
 
4.5.1 Traffic Advisory–ATIS & Variable Message Signs 
 
By use of the predictive travel time provision feature of DYNASMART, the weather/travel 
information dissemination interface allows selection of one or more paths for specified origin 
and destination pairs, and provision of predicted travel times for every prediction time interval 
under inclement weather. Travelers could therefore choose their departure time and/or route 
based on the predictive information.  
 
In addition, roadside VMS plays an important role in en-route weather warning and route 
guidance. Field studies (Luoma et al., 2000; Rämä, 2001) have shown that weather advisory 
VMS can help decrease the average speed as well as the variance in speed so as to increase 
safety and reliability experienced by the traveling public. Weather VMS also proved most 
effective when adverse weather and road conditions were not easy to detect. Weather advisory 
VMS, in the form of slippery road condition signs and fog (low visibility) signs, are in use in 
various places around the world. For example, in Finland, slippery road condition, implemented 
in combination with the minimum headway sign, decreased the mean speed by 1.2 km/h with 
steady display and by 2.1 km/h when the sign was flashing (Rämä, 2001). Hogema and van der 
Horst (1997) showed that the Dutch fog warning signs, implemented in conjunction with variable 
speed limits, decreased the mean speed in fog by 8 to 10 km/h (i.e. 5 to 6 mph). Cooper and 
Sawyer (1993) found that the automatic fog-warning system on the A16 motorway in England 
reduced the mean vehicle speed by approximately 3 km/h (i.e. 2 mph).   
 
In DYNASMART, two types of weather warning (advisory) VMS are implemented (Dong et al., 
2010b): (1) Speed reduction: a VMS warning sign, indicating low visibility (e.g., fog) or slippery 
road (e.g. rain and snow), would generally reduce the speeds of the traveling public. Therefore a 
speed reduction value is specified, for this type of weather VMS, to capture travelers’ response 
to the weather warning. The default values, for different types of adverse weather conditions, are 
set based on the field studies in the literature, discussed earlier. (2) Optional detour: a weather 
warning sign could also suggest that travelers reevaluate their current route if it passes through a 
certain area impacted by adverse weather events. Travel penalties, indicating the added delays 
caused by adverse weather, are specified for the impacted links. Travelers who respond to this 
type of VMS would take into account the adverse weather penalty in their route choice decision, 
that is, the penalty will be included in the generalized cost, discussed in the previous section.  
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4.5.2 Control Strategies 
 
Control strategies include evacuation or diversion under extreme conditions (e.g. severe winter 
storms, hurricanes and floods), traffic signal control, and Variable Speed Limit displays.  
 
1. Mandatory detour VMS 
The mandatory detour VMS advises drivers of lane closures, and mandates all vehicles to follow 
some user-specified sub-path in the vicinity. This type of VMS is also used to inform drivers of 
extreme weather conditions and mandate all vehicles to detour, when a certain area or road is 
closed due to safety concerns. This can be achieved in the DYNASMART program by 
specifying an incident with 100% capacity reduction on the impacted links. A mandatory detour 
VMS could be specified upstream of the closed road to advise travelers of a detour path.  
 
2. Weather-responsive signal timing plan  
Martin et al. (2000) modified signal timing plans to improve traffic conditions under inclement 
weather.   Several types of events may occur that require changes in prevailing signal times.  
Weather is such an event; signal timings maintained by traffic controllers in the field, say in a 
particular weather influence area, may be replaced with a priori prepared adverse weather signal 
timings. To this end, DYNASMART-X is able to read and implement signal timing plans that 
are available in real-time.  
 
3. Variable speed limits 
VSL utilizes traffic speed and volume detection, weather information, and road surface condition 
technology to determine appropriate speeds at which drivers should be traveling, given current 
roadway and traffic conditions. These advisory or regulatory speeds are usually displayed on 
overhead or roadside variable message signs (VMS). VSL systems are already being used as part 
of incident management, congestion management, weather advisory, or motorist warning 
systems to enhance the safety and reliability of roadways (Robinson, 2000). VSL messages are 
sometimes displayed alongside the weather advisory VMS to inform travelers as well as promote 
traffic safety, such as on the interurban Highway E18 in Finland (Rämä, 1999). 
 
In DYNASMART, VSL is implemented to regulate the speed of the impacted links/areas under 
adverse weather conditions (Dong et al., 2010b). The speed limit posted may be adjusted based 
on prevailing weather conditions and a look-up table. In each look-up table, one or more weather 
conditions are specified, as well as the corresponding speed limit reductions. For instance, on 
E18 in Southern Finland between Kotka and Hamina speed limits are set as 120 km/h (74 mph) 
for good road conditions; 100 km/h (62 mph) for moderate road conditions; and 80 km/h (49 
mph) for poor road conditions (Rämä, 1999). Similarly, on the Snoqualmie Pass section of I-90 
in Washington State, the speed limit posted is reduced from 65 mph, in ten-mph increments, to 
35 mph depending on visibility and weather severity, obtained from multiple weather stations, 
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snow plow operators, and the state patrol (Robinson, 2000).  The intent in DYNASMART is to 
be able to evaluate the response of users to such strategies, and incorporate their effect on 
predicted conditions. 
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    5. Implementation of Weather-Related Features in DYNASMART 
 
This section entails a description of newly added weather related options and associated input 
files in DYNASMART. The overview of those weather related features is provided in Table 5-1. 
First, weather conditions can be specified by users for either an entire network or an individual 
link through “weather.dat”. Traffic performance is then simulated in DYNASMART based on 
the adjusted supply-side parameter relations that are provided through a user-specified input file, 
“WAF.dat”. In addition to the simulation of the weather effect on traffic performance, users can 
also simulate traffic advisory and control strategies by using various VMS options. Along with 
existing four types of VMS in DYNASMART, another three weather-related VMS options are 
developed and implemented, namely, speed reduction VMS, travel risk warning, and variable 
speed limits. Aside from these new VMSs, an existing mandatory detour VMS could also used to 
inform drivers of extreme weather conditions and mandate all vehicles to detour, when a certain 
area or road is closed due to safety concerns as discussed in the previous section. The detailed 
descriptions of data preparation for these features are presented in the remainder of this section. 
 

Table 5-1 Weather-related Features in DYNASMART 
Weather-related option Description Associated input file 

Weather data representation 
Specify various weather scenarios for the study network over time. 
Allow users to specify either network-wide weather condition or link-
specific weather condition. 

weather.dat 

Applying the weather effect to 
supply-side parameters 

Specify change in supply-side relation and operational parameters 
regarding weather conditions by applying a weather adjustment 
factor(WAF) 

WAF.dat 

Modeling traffic advisory (speed 
reduction) via VMS 

Simulate the effect of speed reduction advisory through VMS vms.dat 

Modeling traffic advisory (travel 
risk warning) via VMS 

Simulate user response to travel time delay information provided by 
VMS under inclement weather condition 

vms.dat 

Modeling traffic control (Variable 
Speed Limits) via VMS 

Simulate the effect of variable speed limit control through VMS vms.dat, vsl.dat, weather.dat 

 

5.1 Weather Data (weather.dat) 

For the weather scenario, three link-specific weather parameters can be specified by users, that is, 
visibility, rain intensity and snow intensity. The default values of these parameters correspond to 
clear weather conditions, that is, no precipitation and visibility greater than 10 miles. Based on 
the regional weather conditions, the user could modify all or some of the weather parameters (v, 
r, s) of the links within the impacted area. A new input file, namely weather.dat, is created to 
store the adverse weather specifications, described in Table 5-2. 
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Table 5-2 Description of the weather.dat Input File 
Record Type Field Format Width Description 

Network-wide 

Weather flag 

1 Integer Free 1: A network-wide weather condition exists; 

0: otherwise 

1 Float Free Visibility (mile).  

2 Float Free Rain intensity (inch per hour) 

3 Float Free Snow intensity (inch per hour) 

Network  

Weather 

Information 

4 Float Free Start time of the across-the-board  weather condition (minutes) 

 5 Float Free End time for the across-the-board  weather condition (minutes) 

Number of links  1 Integer Free Number of links with link-specific weather condition 

Link 1 Integer Free Link counter (1st link with inclement weather condition) 

Information 2 Integer Free From node 

 3 Integer Free To node 

 4 Integer Free Number of time periods 

Weather  1 Float Free Start time for the 1st weather condition (minutes) 

Information 2 Float Free End time for the 1st weather condition (minutes) 

 3 Float Free Visibility (mile) 

 4 Float Free Rain intensity (inch per hour) 

 5 Float Free Snow intensity (inch per hour) 

..... ..... ..... ..... ..... 

Weather  1 Float Free Start time for the Nth weather condition (minutes) 

Information 2 Float Free End time for the Nth weather condition (minutes) 

 3 Float Free Visibility (mile) 

 4 Float Free Rain intensity (inch per hour) 

 5 Float Free Snow intensity (inch per hour) 

..... ..... ..... ..... ..... 

Link 1 Integer Free Link counter (last link with inclement weather condition) 

Information 2 Integer Free From node 

 3 Integer Free To node 

 4 Integer Free Number of time periods 

Weather  1 Float Free Start time for the 1st weather condition (minutes) 

Information 2 Float Free End time for the 1st weather condition (minutes) 

 3 Float Free Visibility (mile) 

 4 Float Free Rain intensity (inch per hour) 

 5 Float Free Snow intensity (inch per hour) 

..... ..... ..... ..... ..... 

Weather  1 Float Free Start time for the Nth weather condition (minutes) 

Information 2 Float Free End time for the Nth weather condition (minutes) 

 3 Float Free Visibility (mile) 

 4 Float Free Rain intensity (inch per hour) 

 5 Float Free Snow intensity (inch per hour) 
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If both across-the-board network weather condition and link-specific weather condition are 
defined, link-specific weather information dominates, namely, link-specific weather information 
applies regardless of the network weather condition; while network weather condition applies for 
all the links without the link-specific weather condition. 
 
An example weather.dat file is shown in Figure 5-1. Particularly, a network-wide weather 
condition is specified on the first line, namely, low visibility of 0.5 mile and rainfall at the rate of 
0.1 inch/hour during the first 2 hours (0 to 120 minutes). In addition, three (i.e. the number on 
the second line) link-specific weather conditions are defined in the rest of the file. The first link 
is from node 4042 to 4087 and has two weather events: during 10-40 minutes, the visibility is 1.0 
mile with rainfall intensity of 0.1 inch/hour; and during 41-60 minutes, the visibility decreased to 
0.5 mile and rainfall intensity increased to 0.2 inch/hour. The second (on the link of 4084 to 
4042) and the third (on the link of 3826 to 581) link-specific weather events are defined in the 
same fashion. 
 

1 
0.5    0.1   0      0    120 
3 
1    4042  4087     2 
       10    40     1.0    0.1   0 
       41    60   0.5    0.2   0 
2    4084  4042 1 
       10    80     0.5    0     0.1 
3    3826   581     1 

      0    20     1.0    0     0 

Figure 5-1 General Format of the weather.dat input file 
 
Once the weather input file is created, the DYNASMART-P program will return to estimate and 
predict traffic conditions through the procedure designed to incorporate traffic impact by 
inclement weather condition. This procedure requires additional components for the entire 
system to support the efficient and reliable estimation and prediction of traffic impact due to 
weather changes, discussed next.   
 

5.2 Weather Adjustment Factor Data (WAF.dat)  

When DYNASMART-P receives inclement weather input, a model is needed to simulate traffic 
conditions affected by inclement weather within DYNASMART-P. For example, an adjustment 
factor for capacity, free-flow speed, and saturation flow can be applied in the simulator, which is 
obtained based on the inclement weather parameters (visibility, rain intensity and snow intensity) 
and the calibrated weather-traffic flow relation. This section describes the impact of weather on 
the relationships between traffic speed, flow, and density, and other macroscopic measurements. 
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Both the functional form and the parameter values (free mean speed, jam density, breakpoints for 
multiple regime models) may be affected by weather, and may be affected differently by the 
characteristics of different weather instances. The FHWA (2006) report by Cambridge 
Systematics summarizes changes in the so-called fundamental diagram observed at a limited 
number of locations (e.g. Twin Cities, Minnesota, shown below). These results suggest a 
relatively simple-to-apply modification to the existing model underlying traffic propagation on 
freeways in DYNASMART-P (and –X). Although the applicability of this modification to other 
environments, or to more extreme conditions in the same environment is not evident, it provides 
a good starting point for the modification to be implemented. Parameters that are relevant to 
inclement weather impacts in the supply side of DYNASMART-P are listed by the type of input 
data in the following table.  
 

Table 5-3 Supply Side Properties related with Weather Impact in DYNASMART-P 
Input data Traffic properties Note 

Traffic flow model 1. Speed-intercept , (mph) 
2. Minimal speed , (mph) 
3. Density break point , (pcpmpl) 
4. Jam density , (pcpmpl) 
5. Shape term alpha   

The italic styled properties 
are only available in dual-
regime model 

Link 6. Maximum service flow rate, (pcphpl or vphpl)1 
7. Saturation flow rate , (vphpl) 
8. Posted speed limit adjustment margin, (mph) 

 

Signal control Cycle length, offset, green, amber, max green, min green All same units, (seconds) 
Left-turn capacity 9. g/c ratio  
2-way stop sign capacity 10. Saturation flow rate for left-turn vehicles 

11. Saturation flow rate for through vehicles 
12. Saturation flow rate for right-turn vehicles 

All same units, (vphpl)  

4-way stop sign capacity 13. Discharge rate for left-turn vehicles 
14. Discharge rate for through vehicles 
15. Discharge rate for right-turn vehicles 

All same units, (vphpl)  

Yield sign capacity 16. Saturation flow rate for left-turn vehicles 
17. Saturation flow rate for through vehicles 
18. Saturation flow rate for right-turn vehicles 

All same units, (vphpl)  

 
The inclement weather impact on each parameter listed in Table 5-3 can be represented by a 
corresponding weather adjustment factor (WAF). 

 svrvsrvFi  543210 

 

(5-1)

where 

iF    weather adjustment factor for parameter i 

v    visibility 
r    precipitation intensity of rain 
s    precipitation intensity of snow 

543210 ,,,,,   coefficients 
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the new input file, namely WAF.dat, is created to store the specifications of above mentioned 
coefficients, described in Table 5-4. 
 

Table 5-4 Description of the WAF.dat Input File 
Record Type Field Format Width Description 

Weather  1 Integer Free Parameter index (as shown in Table 2) 

Adjustment 2 Float Free Constant term for 1st parameter 

Factor 3 Float Free Coefficient of visibility term for 1st parameter 

 4 Float Free Coefficient of rain intensity term for 1st parameter 

 5 Float Free Coefficient of snow intensity term for 1st parameter 

 6 Float Free Coefficient of interaction term of visibility and rain intensity for 1st parameter 

 7 Float Free Coefficient of interaction term of visibility and snow intensity for 1st parameter 

..... ..... ..... ..... ..... 

Weather  1 Integer Free Parameter index (as shown in Table 2) 

Adjustment 2 Float Free Constant term for the last parameter 

Factor 3 Float Free Coefficient of visibility term for the last parameter 

 4 Float Free Coefficient of rain intensity term for the last parameter 

 5 Float Free Coefficient of snow intensity term for the last parameter 

 6 Float Free Coefficient of interaction term of visibility and rain intensity for the last parameter 

 7 Float Free Coefficient of interaction term of visibility and snow intensity for the last parameter 

 
An example WAF.dat file is shown in Figure 5-2. The first line corresponds to the Speed-intercept 
parameter listed in Table 5-3. The constant term in Equation (5-1) is 0.91 for this parameter; and the 
coefficients for visibility, rain and snow precipitation are 0.009, -0.404 and -1.455 respectively. Thus 
the weather adjustment factor for Speed-intercept can be calculated as follows. 

 srvF  455.1404.0009.091.01

 

(5-2)

The rest of file specifies coefficients for the other 17 parameters listed in Table 5-3. 
 
DYNASMART-P provides the capability of allowing multiple signal timing plans, each of which 
corresponds to a certain time period (defined by a start time and an end time). Therefore, these 
times and associated signal controls could be defined to correspond to the weather event(s) of 
interest. 
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Parameter β0 β1 β2 β3 β4 β5 

1 0.91 0.009 -0.404 -1.455 0 0 
2 1 0  0   0   0 0 
3 0.83 0.017 -0.555 -3.785 0 0 
4 1 0  0   0   0 0 
5 1 0  0   0   0 0 
6 0.85 0.015 -0.505 -3.932 0 0 
7 0.91 0.009 -0.404 -1.455 0 0 
8 0.91 0.009 -0.404 -1.455 0 0 
9 0.91 0.009 -0.404 -1.455 0 0 
10 0.91 0.009 -0.404 -1.455 0 0 
11 0.91 0.009 -0.404 -1.455 0 0 
12 0.91 0.009 -0.404 -1.455 0 0 
13 0.91 0.009 -0.404 -1.455 0 0 
14 0.91 0.009 -0.404 -1.455 0 0 
15 0.91 0.009 -0.404 -1.455 0 0 
16 0.91 0.009 -0.404 -1.455 0 0 
17 0.91 0.009 -0.404 -1.455 0 0 
18 0.91 0.009 -0.404 -1.455 0 0 

Figure 5-2 General Format of the WAF.dat Input File 
 
 

5.3 Variable Message Signs (vms.dat) 

As three types of new VMS are introduced, currently seven types of VMS are supported by 
DYNASMART-P. Type 1 VMS is the speed advisory VMS that allows users to 
increase/decrease speed by a certain percentage below/above a certain threshold. Type 2 VMS is 
the mandatory detour VMS that advises drivers of lane closures, and mandates all vehicles to 
follow some user-specified sub-path in the vicinity. Type 3 VMS is the congestion warning 
VMS, which allows users to specify percentages of VMS-responsive vehicles (user class 5) to 
evaluate the VMS information and divert if a better path exists. Therefore, the user is advised to 
select VMS type 3 on links that would provide diversion points. Type 4 VMS is the optional 
detour VMS. Similar to type 2, it also advises drivers with lane closure information. However, 
type 4 gives drivers the option to follow the detour path or keep their original path, based on the 
boundedly rational decision rule. Type 5 VMS is the speed reduction (weather) VMS, which 
suggests a speed reduction due to adverse weather conditions. Type 6 VMS is the travel risk 
(weather) VMS, which suggests all VMS-responsive and en-route info vehicles to reevaluate 
their current route and divert to a better route, if exists, considering the weather-related travel 
penalty associated with the link. Type 7 VMS is the variable speed limits (weather) VMS, which 
adjusts speed limits according to the weather condition and a look-up table (defined in a separate 
file vsl.dat). The vsl.dat file allows users to specify multiple variable speed limits (VSL) look-up 
tables, each of which could define different weather conditions and the corresponding speed 
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limits. Detailed description of this file and its format are provided in Table 5-5 and Figure 5-3, 
respectively.  

 

Table 5-5 Description of the vms.dat Input File 
Record Type Field Format Width Description 

Number of signs 1 Integer Free Number of Variable Message Signs 

Sign description 1 Integer Free Type of VMS according to the following description 
1: speed advisory; 2: mandatory detour; 
3: congestion warning; 4: optional detour;  

5: speed reduction (weather); 6: travel risk; 7: variable speed limits 

 2 Integer Free Upstream node of  the 1st VMS link 

 3 Integer Free Downstream node of the 1st VMS link 

 4 Integer Free Type 1: speed threshold (+ or -) (mph)1  

Type 2: 1002 

Type 3: percentage of user class 53 who will actually evaluate and respond to 
the VMS information 

Type 4: 1002 

Type 5:  1002 

Type 6: value of risk (default value is 1) 

Type 7: 1002 

 5 Integer Free Type 1: percentage reduction or increase in VMS link speed 

Type 2: number of nodes in detour sub-path 

Type 3: path preference (0 or 1) for diversion 
1: current best path; 0: a random path among K-paths 

Type 4: number of nodes in detour sub-path 

Type 5: speed reduction on the VMS link 

Type 6: travel penalty (percentage of link travel time) 

Type 7: look-up table number 

 6 Float Free Start time for the 1st VMS (minutes) 

 7 Float Free End time for the 1st VMS (minutes) 

Subpath4 1 Float Free 1st node in the detour sequence for the 1st VMS (if applicable) 

..... ..... ..... ..... ..... 

 N   Last node in the detour sequence for the 1st VMS (if applicable) 

..... ..... ..... ..... ..... 

Sign description 1 Integer Free Type of VMS according to the following description 
1: speed advisory; 2: mandatory detour; 
3: congestion warning; 4: optional detour;  

5: speed reduction (weather); 6: travel risk; 7: variable speed limit 

 2 Integer Free Upstream node of the last VMS link 

 3 Integer Free Downstream node of the last VMS link 

 4 Integer Free Type 1: speed threshold (+ or -) (mph)1  

Type 2: 1002 

Type 3: percentage of user class 53 who will actually evaluate and respond to 
the VMS information 

Type 4: 1002 
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Record Type Field Format Width Description 

Type 5:  1002 

Type 6: value of risk (default value is 1) 

Type 7: 1002 

 5 Integer Free Type 1: percentage reduction or increase in VMS link speed 

Type 2: number of nodes in detour sub-path 

Type 3: path preference (0 or 1) for diversion 
1: current best path; 0: a random path among K-paths 

Type 4: number of nodes in detour sub-path 

Type 5: speed reduction in the VMS link 

Type 6: travel penalty (percentage of link travel time) 

Type 7: look-up table number  

 6 Float Free Start time for the last VMS (minutes) 

 7 Float Free End time for the last VMS (minutes) 

Subpath4  1 Float Free 1st node in the detour sequence for the last VMS 

..... ..... ..... ..... ..... 

 N   Last node in the detour sequence for the last VMS 

1 If positive (+), link speed will be increased (if link speed is lower than the threshold). If negative (-), link speed will be decreased (if actual 
link speed is higher than the threshold). 

2 This entry is read but ignored by DYNASMART-P. It is used to keep the same number of fields for VMS types.  
3 If the VMS preemption mode is set to 1 (in scenario.dat), then this fraction applies to user classes 2-5. 
4 For VMS types 2, 4 only. 

 
An example vms.dat is shown in Figure 5-3. The first record indicates that there are 7 VMS 
locations or sites. The second record states that a type 1 (speed advisory) VMS (field 1) is 
located between upstream node 1 (field 2) and downstream node 20 (field 3). A +40 mph 
threshold is given (field 4). The positive sign indicates that if the link speed is less than 40 mph, 
VMS-responsive vehicles will attempt to increase their speed to reach this speed. If their speed is 
already above 40 mph, then no action is taken. The next field indicates that VMS responsive 
vehicles (user class 5) will increase their speed by 10 percent to achieve the recommended speed 
threshold. The VMS is activated from time 10.0 (field 6) until time 30.0 minutes (field 7). 
 
The third record (2nd VMS link in network) shows that there is a detour type VMS (type 2) (field 
2) located between upstream node 53 and downstream node 52. All vehicles need to divert 
(100%) and there are three nodes in the specified sub-path for detouring. This VMS is activated 
between minutes 10.0 (field 6) and 80.0 (field 7) of simulation. The next immediate record 
specifies the node sequence of the sub-path for detouring. The first node is 52, which is required 
to be the downstream node of the VMS (there is no requirement for the last node on detour sub-
path); the remaining two nodes on sub-path are 51 and 14. The mandatory detour-type VMS is of 
particular importance for work zone and incident operational management strategies, and 
extreme weather events. 
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The fourth record (3rd VMS link in network) shows that there is a congestion warning VMS (type 
3) (field 1) located between upstream node 48 (field 2) and downstream node 41 (field 3), and a 
response rate of 15 percent (field 4) is specified. After diversion, vehicles will be assigned the 
current best (1) path (field 5) starting from the downstream node of the VMS link. The VMS will 
be activated from minute 0.0 (field 6) until minute 20.0 (field 7).  
 
The fifth record (4th VMS link in network) shows that there is a weather advisory VMS (type 5) 
(field 1) located between upstream node 53 (field 2) and downstream node 52 (field 3).  The 
VMS suggests a speed reduction (field 4) due to adverse weather conditions. In particular, 5 mph 
reduction (field 5) in speed is specified for the vehicles traveling on the link during minute 0.0 
(field 6) until minute 20.0 (field 7). 
 
The sixth record (5th VMS link in network) shows that there is a weather advisory VMS (type 6) 
(field 1) located between upstream node 53 (field 2) and downstream node 52 (field 3). The 
VMS suggests all VMS-responsive vehicles to reevaluate their currents route and divert to a 
better route, if exists, considering the travel risk associated with the link (field 4 indicates the 
value of risk). A weather-related travel penalty, 10% extra travel time (field 5) is included in the 
generalized cost. This VMS is activated between minutes 20.0 (field 6) and 40.0 of simulation 
(field 7). 
 
The seventh record (6th VMS link in network) shows that there is a weather-responsive variable 
speed limits (type 7) (field 1) located between upstream node 48 (field 2) and downstream node 
41 (field 3). The speed limits are determined based on look-up table 1 (field 5) in vsl.dat. This 
VSL is activated between minutes 10.0 (field 6) and 20.0 of simulation (field 7). 
 
7 
      1      1     20     40     10  10.0  30.0 
      2     53     52    100      3  10.0  80.0  
        52     51     14 
      3     48     41     15      1   0.0  20.0 
      5     53     52    100      5   0.0  20.0 

6     53     52      1     10  20.0  40.0 
      7     48     41    100      1  10.0  20.0  
       

Figure 5-3 General Format of the vms.dat Input File 
 
 

5.4 Variable Speed Limits via VMS (vsl.dat) 

In order to implement type 7 VMS (Variable Speed Limits) in DYNASMART, an additional file 
vsl.dat needs to be prepared to specify speed limit regulation through one or more look-up tables. 
In each look-up table, one or more weather conditions are specified, as well as the corresponding 
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speed limit reductions. For example, if there are links whose posted speed limit is 65 mph and 
variable speed limits under rain and snow are 55 mph and 45 mph respectively, the look-up table 
has two lines that state the speed reduction of 10 mph (65-55mph) for rain and 20 mph (65-45 
mph) for snow. The posted speed limit for all the links in the network is specified in a separate 
input file (network.dat) and these values are used when calculating actual speed limit for certain 
links in DYNASMART.  

Table 5-6 Description of the vsl.dat Input File 
Record Type Field Format Width Description 

Number of tables 1 Integer Free Number of look-up tables for VSL 

1 Integer Free Look-up table counter Table description 

2 Integer Free Number of lines in the table 

1 Float Free Visibility upper bound (miles) 

2 Float Free Visibility lower bound (miles) 

3 Float Free Rain intensity lower bound (inch/hour) 

4 Float Free Rain intensity upper bound (inch/hour) 

5 Float Free Snow intensity lower bound (inch/hour) 

6 Float Free Snow intensity upper bound (inch/hour) 

The 1st line of  

the look-up table 

 

 

 

 

 
7 Float Free Speed limit reduction (mph) 

..... ..... ..... ..... ..... 

1 Float Free Visibility upper bound (miles) 

2 Float Free Visibility lower bound (miles) 

The last line of  

the look-up table 

3 Float Free Rain intensity lower bound (inch/hour) 

 4 Float Free Rain intensity upper bound (inch/hour) 

 5 Float Free Snow intensity lower bound (inch/hour) 

 6 Float Free Snow intensity upper bound (inch/hour) 

 7 Float Free Speed limit reduction (mph) 

 
An example vsl.dat file is shown in Figure 5-4. The first line indicates that there is only one look-up 
table in the file. The second line shows that the first (and the only one in this example) look-up has 
four rows. The third line (i.e. the first row of the look-up table) suggests that when visibility is in the 
range of 1 – 3 miles and there is no precipitation (e.g. fog) the speed limit should be lowered by 5 
mph. The rest of the file specifies the other three rows (i.e. weather conditions and the corresponding 
speed limit reduction) of the look-up table. 
 

1 
1      4 
3      1      0      0      0      0      5 
10     2      0      0.25   0      0     10 
10     2      0.25   0.9    0      0     15 
10     2      0      0      0      0.2   20 

Figure 5-4 General Format of the vsl.dat Input File 
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    6. Calibration and Evaluation  
 
This section describes a calibration procedure for the speed-density relationship and preparation 
of WAF.dat file discussed in the previous section. WAF.dat file contains information about 
changes in traffic parameters according to visibility and precipitation intensity such that weather 
impact can be reflected in a simulation process in DYNASMART. The weather and traffic data 
used for calibration are obtained from Archived Data Management System (ADMS) in Virginia.  
 

6.1 Data for Calibration 

 
The Archived Data Management System (ADMS) Virginia archives both traffic data and 
weather data for selected locations in Virginia. Weather data consists of visibility (1-10 mile), 
precipitation (inch/hour) and weather type. Collection times are not at a fixed interval. Usually 
there are 1-5 observations for one hour. Traffic data consists of vehicle count, occupancy and 
speed at 5-minute aggregation interval. The study site is the Hampton Roads network, composed 
of three freeways segments: (1) I-64 between Bay Avenue and the Virginia Beach-Chesapeake 
City Limits, I-64 forming the outer loop, (2) I-564 between Terminal Boulevard and I-64, I-264 
between Broad Creek and Rosemont Road, and (3) entire I-664. 
 

Google Map DYNASMART Network 
 

Figure 6-1 The Hampton Roads Network 
 
The densities could be converted from the occupancy data using the following relationship: 

 occ
LL

k
sv





8.52

 

(6-1)

where 
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k  density      [veh/mi/ln] 
Lv  average vehicle length    [feet] 
Ls  average sensor length    [feet] 
occ  occupancy     [%] 

 
Lv is assumed to be 5 meters (approximately 16.4 feet); and Ls is set to 2 meters (approximately 
6.5 feet). 
 

6.2 Calibration of Speed-Density Function 

 
DYNASMART uses a modified Greenshields model for traffic propagation. In the current 
version, two types of the modified Greenshields family models are available. Type one is a dual-
regime model in which constant free-flow speed is specified for the free-flow conditions (1st 
regime) and a modified Greenshields model is specified for congested-flow conditions (2nd 
regime). Dual-regime model is generally applicable to freeways. The reason why a two-regime 
model is applicable for freeways in particular is that freeways have typically more capacity than 
arterials and can accommodate dense traffic (up to 2300 pc/hr/ln) at near free-flow speeds. 
Hence, a slight increase in traffic would not significantly deteriorate prevailing speeds in the 1st 
regime. 
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Figure 6-2 A Dual-Regime Modified Greenshields Model 
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In mathematical terms, the dual-regime modified Greenshields is expressed as follows: 

 fi uv  ,                                                bpi kk 0  

  














jam

i
fi k

k
vvvv 100 ,          jamibp kkk   

   (6-2) 

where  
 iv   speed on link i 

 fv   speed-intercept 

 uf  free-flow speed on link i 
 0v   minimum speed on link i 

 ik   density on link i 

 jamk   jam density on link i 

    power term  
 kbp  breakpoint density 
 
Type two uses a single regime to model traffic relations for both free- and congested-flow 
conditions, i.e. 
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Figure 6-3 A Single-Regime Greenshields Model 
 
In mathematical terms, the type 2 modified Greenshields is expressed as follows: 
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(6-3)
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Parameters for the dual-regime Greenshields model (in DYNASMART-P) can be calibrated for 
the freeways in the Hampton Roads network, that is, I-64, I-264 and I-564, using the time-
dependent traffic data from ADMS Virginia. There are six parameters to be calibrated, namely, 
breakpoint density (kbp), free-flow speed (uf), speed-intercept ( fv ), minimum speed ( 0v ), jam 

density ( jamk ), and the power term ( ). 

 
The speed-density relationship could be approximated by two portions, a straight portion and a 
curvilinear portion.  Hence two equations must be estimated to correctly and adequately 
represent the freeway traffic model structure.  The straight portion of the speed-density 
relationship is represented by the equation: 

 vi = uf ,                                                bpi kk 0
 

(6-4)

For the straight portion of the model, only one parameter needs to be estimated, namely the mean 
free speed uf, which reflects the true prevailing freeway speed under uncongested conditions.  
On the other hand, the modified Greenshields’ model is used to describe the curvilinear portion 
(second regime) of the speed-density relation, which is expressed by the following equation. 
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(6-5)

 
Linear regression analysis is the major tool for the calibration of the link traffic flow models.  
This can be achieved by transforming the modified Greenshields’ model into a linear form by 
taking the natural logarithm on both sides: 

 )1ln()ln()ln( 00
jam

i
fi k

k
vvvv  

 

(6-6)

which is in the form of  

 baXY 

 

(6-7)

and can be estimated directly by conducting a simple linear regression analysis.  The parametric 
analysis procedure is also implemented to help for linear regression analysis.   
 
The data required to calibrate this component includes: 

 Time-varying link density 

 Average speed for the corresponding time intervals 
 
The MOE for this task include: 

 Goodness of fit - R-squared value in the linear  regression; 

 Root mean squared error for speed. 
 
The procedures of calibrating speed-density function are as follows. 
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Step 1. Process observation data 
Step 1.1. Categorized the traffic data (speed and occupancy), for each location, into five 

data sets according to the weather condition (i.e., precipitation intensity), 
namely, normal, light rain (less than 0.1 in./hr), moderate rain (0.1 to 0.3 in./hr), 
heavy rain (greater than 0.3 in./hr), and light snow (less than 0.1 in./hr). Since 
there have been not much data available for heavier snow, only one category is 
used for snow. 

Step 1.2.Convert occupancy into density using Equation (6-1). 
Step 1.3. For each location and each weather condition, perform Step 2 to 5. 

Step 2. Fit the data into a dual-regime model. For initial kbp of 10 vpmpl, do the followings. 
Step 2.1 Divide the data set into to subsets based on the initial kbp, that is, the first and 

second regime observations. 
Step 2.2. For the first regime, the free-flow speed, uf, is estimated as the mean of the 

speeds. Root mean squared error for speeds is also calculated. 
Step 2.3. For the second regime, set v0 and kjam based on the observations, that is, the 

minimum speed observed and maximum density observed.  
Step 2.4. Transform the second regime data, speed and density, as follows: 

)ln( 0vvY i  , )1ln(
jam

i

k

k
X  . Let )ln( 0vvb f  .  

 Step 2.5. Perform linear regression of the function bXY   to estimate  and b.  

Step 2.6. Recover vf from the estimated b, that is, 0vev b
f  .  

 Step 2.7. Calculate R-squared value for the second regime. 
Step 2.8. Calculate difference in estimated speeds at the joint of two regimes by 

comparing uf in the first regime and the modeled speed value at kbp in the 
second regime. 

Step 3. Increase kbp by 1 vpmpl and repeat Step 2.1 to 2.8 until kbp becomes 30 vpmpl. 
Step 4. Find the optimal value of kbp based on MOEs of the fitted models for each regime and 

joint fit observations for the entire models. 
Step 5. Choose the function that fits best to the data set for each weather condition. 
 
The calibration result for one freeway section of I-64 is presented in Figure 6-4. It shows the 
weather effect on speed-density relation and flow-density relation due to reductions in speed for 
both 1st and 2nd regime under rain and snow events. Detailed calibration results for all study 
sections are presented in Appendix A. 
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Figure 6-4 Calibrated Speed-Density and Flow-Density Curves for a Freeway Section I-64 

 (Data source: The Archived Data Management System Virginia) 

 

6.3 Calibration of Weather Adjustment Factors 

 
Once speed-density functions for different weather conditions (i.e., normal, light rain, moderate 
rain, and light snow) are obtained for each location, another linear regression is conducted to 
estimate weather adjustment factor coefficients in Equation (5-1) for the WAF.dat file. 
 
The procedures for preparing WAF.dat are as follows. 
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Step 1. Calculate the WAFs for each parameter using the relation 
u

u
Fu

'
 , where u and u’ 

represent the parameters under the normal condition and the rain (or snow) condition 
respectively. 
Step 2. Conduct linear regression for each parameter using the WAF for a dependent variable 
and visibility and categorized precipitation intensity of each data point for independent variables. 
Step 3. Prepare WAF.dat file using calibrated coefficients for each parameter from Step 2. 
 
Note that not all of the parameters listed in Table 5-3 can be calibrated using the observation data. 
Some parameters could be inferred from other calibrated parameters.  
(1) Traffic flow model related parameters, that is, speed-intercept (vf), minimum speed(v0), 
density break point(kbp), jam density(kjam), shape term alpha(α) and maximum service flow rate 
(fmax) can be calibrated from the traffic data. However, as minimum speed, jam density and shape 
term alpha turn out to be insensitive to weather conditions from the calibration results, WAF for 
those parameters are assumed as 1, which indicates these are not affected by weather conditions. 
(2) Link characteristics: saturation flow rate, and posted speed limit adjustment could be inferred 
from the calibrated traffic flow model. 
(3) Signal control: the adjustments in cycle length, offset, green, amber, maximum green, and 
minimum green could be inferred from the saturation flow rate. 
(4) Left turn/stop sign/yield sign capacities could be calibrated using the traffic data, for example, 
maximum observed flow rate could be used as a surrogate of capacity. 
 
The detailed calibration results of WAF are provided in Table 6-1. 

Table 6-1 Coefficients of Weather Adjustment Factor 
Input data Traffic properties β0 β1 β2 β3 β4 β5 

Traffic flow 
model 

1. Speed-intercept , (mph) 
2. Minimal speed , (mph) 
3. Density break point , (pcpmpl) 
4. Jam density , (pcpmpl) 
5. Shape term alpha 

0.91 
1 

0.83 
1 
1 

0.009 
0 

0.017 
0 
0 

-0.404 
0 

-0.555 
0 
0 

-1.455 
0 

-3.785 
0 
0 

0 
0 
0 
0 
0 

0 
0 
0 
0 
0 

Link 
6. Maximum service flow rate, (pcphpl or vphpl) 
7. Saturation flow rate , (vphpl) 
8. Posted speed limit adjustment margin, (mph) 

0.85 
0.91 
0.91 

0.015 
0.009 
0.009 

-0.505 
-0.404 
-0.404 

-3.932 
-1.455 
-1.455 

0 
0 
0 

0 
0 
0 

Left-turn capacity 9. g/c ratio 0.91 0.009 -0.404 -1.455 0 0 

2-way stop sign 
capacity 

10. Saturation flow rate for left-turn vehicles 
11. Saturation flow rate for through vehicles 
12. Saturation flow rate for right-turn vehicles 

0.91 
0.91 
0.91 

0.009 
0.009 
0.009 

-0.404 
-0.404 
-0.404 

-1.455 
-1.455 
-1.455 

0 
0 
0 

0 
0 
0 

4-way stop sign 
capacity 

13. Discharge rate for left-turn vehicles 
14. Discharge rate for through vehicles 
15. Discharge rate for right-turn vehicles 

0.91 
0.91 
0.91 

0.009 
0.009 
0.009 

-0.404 
-0.404 
-0.404 

-1.455 
-1.455 
-1.455 

0 
0 
0 

0 
0 
0 

Yield sign 
capacity 

16. Saturation flow rate for left-turn vehicles 
17. Saturation flow rate for through vehicles 
18. Saturation flow rate for right-turn vehicles 

0.91 
0.91 
0.91 

0.009 
0.009 
0.009 

-0.404 
-0.404 
-0.404 

-1.455 
-1.455 
-1.455 

0 
0 
0 

0 
0 
0 
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    7. Application 
 
This section demonstrates the application of the resulting weather-sensitive DTA model to an 
actual network, with particular focus on two aspects: (1) assess the impacts of adverse weather 
on transportation network; and (2) evaluate effectiveness of weather-related variable message 
signs in alleviating traffic congestion caused by adverse weather conditions.   
 

7.1 Test bed Network and Simulation Settings 

 
Figure 7-1 shows the test network, namely the CHART (Maryland, United States) network 
(Mahmassani et al., 2005). The network consists, primarily, of the I-95 corridor between 
Washington, DC and Baltimore, MD, and is bounded by two beltways (I-695 Baltimore Beltway 
to the north and I-495 Capital Beltway to the south). The network has 2182 nodes, 3387 links 
and 111 traffic analysis zones (TAZ). A two-hour morning peak (i.e. 7-9AM) dynamic OD 
demand table estimated for the network is used in the experiments. Travelers are assumed to 
follow their habitual routes, which are determined by performing a dynamic user equilibrium 
assignment, as suggested by Mahmassani and Peeta (1993). When an adverse weather event 
occurs, travelers will stick to their habitual routes if they do not receive specific road weather 
information, or are not required to detour by certain control measures. However, if such 
information or controls are available, for example, a weather VMS indicating extra delay on a 
certain road due to heavy rain, travelers might change to a better route. 
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Figure 7-1 The CHART Network 
 

7.2 Network Performance under Adverse Weather Conditions 

To illustrate the effects of network-wide road weather conditions, three scenarios are compared: 

1. Scenario 1 (“Clear”): the base case scenario corresponds to clear weather conditions.  
2. Scenario 2 (“Moderate rain”): corresponds to a moderate rain day, that is, visibility of 1.0 

mile and rain intensity of 0.2 inch/hour. 
3. Scenario 3 (“Heavy rain”): corresponds to a heavy rain day, that is, visibility of 0.5 mile 

and rain intensity of 0.5 inch/hour. 

The time-varying network travel times are compared in Figure 7-2 for these three scenarios. 
Since the rainy weather affects the supply-side parameters, such as lower capacity and saturation 
flow rate, the network travel times become longer when the weather conditions get more serious. 
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Figure 7-2 Network Travel Time Comparison 
 
A similar pattern, namely heavier rain condition resulting in longer travel time, is obtained by 
examining time-varying travel times between a major OD (origin-destination) pair of the 
network, as shown in Figure 7-3. Moreover, Figure 7-4 shows the standard deviations of actual 
travel times at 5-minute intervals.  We can see that not only travel time becomes longer when 
adverse weather occurs, but also the variability of the travel time is greater, making travel less 
reliable in the network. 

 

Figure 7-3 OD Travel Time Comparison 
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Figure 7-4 Standard Deviations of OD travel times 
 

In addition, to examine the impacts of local weather condition (for instance, rain in a certain area 
of the network) we assume that it rains on a stretch of Freeway I-95, following the pattern shown 
in Figure 7-5. Namely, the rain starts at 7:10 AM with visibility of 1.0 mile and intensity of 0.2 
inch/hour; at 7:40 AM the rain intensity increases to 0.5 inch/hour and the visibility decreases to 
0.5 mile, indicating heavier rain situation; then at 8 AM the rain stops. 

 

Figure 7-5 Time-Varying Local Weather Conditions 
 
A weather-impacted link along I-95 is selected to illustrate local weather impacts on traffic 
conditions. The speed on the link maintains (nearly) the free flow speed when the weather is 
clear. With precipitation, however, the speed drops significantly. For the 7:10-7:40 AM time 
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period, when it rains moderately, the speed drops to around 50 mph. This is mainly caused by 
drivers’ speed reduction in response to low visibility and slippery road surface, which could be 
predicted/calculated using weather adjustment factor shown in Equation (5-1). Nevertheless, in 
the 7:40-8:00 AM period, when it is raining heavily, the speed drops to as low as 20 mph. This is 
a combined outcome of drivers’ speed reduction response and congestion effects; that is, drivers 
slow down because of not only the precipitation conditions but also the traffic congestion along 
the road. Under such circumstances, predicting link performance using the WAF alone, while 
ignoring the congestion effect caused by the adverse weather conditions, would not be sufficient.  

 

Figure 7-6 Time-Varying Speeds on a Weather-Impacted Link 
 

7.3 Evaluation of Weather-related Information and Control Strategies 

In order to alleviate the impacts of adverse weather, weather-related information and control 
strategies could be applied. Three scenarios are compared to illustrate the effectiveness of 
weather detour VMS. 

Scenario 1 (“Clear”): the base case scenario corresponds to clear weather conditions. Users are 
assumed to follow their habitual routes, that is, the user equilibrium. 
Scenario 2 (“Rain”): the time-varying weather conditions (Figure 7-6) are applied to a stretch of 
I-95. Travelers, however, still follow their habitual routes, as there is no road weather 
information or control measures. 
Scenario 3 (“Rain + VMS”): variable message signs are placed upstream of the weather-
impacted area, which indicate an extra delay (penalty) on each impacted link due to adverse 
weather conditions. In particular, the penalty is specified as 50% of link travel time for the 
moderate rain period (i.e. 7:10 – 7:40AM) and 100% for the heavy rain period (i.e. 7:40-
8:00AM). 

Figure 7-7 to Figure 7-9 present the link performance under these three scenarios. Weather VMS 
is able to detour some travelers from the impacted road, reflected in less accumulated flow (as 
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shown in Figure 7-9) on the rain-affected link. As a result, the congestion effect caused by the 
precipitation condition is eliminated. As shown in Figure 7-7, the speed reductions during the 
moderate rain period (7:10-7:40AM) are comparable whether VMS is active or not. As explained 
earlier, this reflects drivers’ voluntarily speed reduction to accommodate worse driving 
conditions for safety concerns. During the heavy rain period, however, weather VMS helps to 
maintain relatively high speed and relatively low density compared to the no-VMS case. The 
congestion caused by adverse weather is clearly shown by link density comparison (Figure 7-8). 
Under clear condition or using weather VMS, the density is kept below 30 vehicles per mile per 
lane (LOS D or better), indicating relatively uncongested traffic conditions. On the other hand, 
when there is precipitation on the road but travelers are not informed, heavier congestion is 
experienced.  

In brief, weather detour VMS helps to alleviate traffic congestion by detouring travelers to 
alternative routes. The voluntary speed reduction due to safety concern is, however, not affected 
by this type of VMS. 

 

 

Figure 7-7 Link Speed Comparison 
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Figure 7-8 Link Density Comparison 
 

 

Figure 7-9 Accumulated Flow Comparison 
 
In addition, the time-varying travel times of vehicles traveling between an OD pair (affected by 
the rainfall area) are compared. As shown in Figure 7-10, the precipitation, especially the heavy 
rain period, affects driving conditions and therefore results in longer travel time. Variable speed 
limits however help maintain relatively low travel time as the OD flows are distributed more 
efficiently in response to the speed limit indication. This observation is consistent with Abdel-
Aty et al.’s (2006) conclusion that VSL strategies, when properly set, could produce travel time 
savings, in addition to their potential safety benefit. 
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Figure 7-10 OD Travel Time Comparison 
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    8. Conclusions 
 
The study addresses both supply and demand aspects of the response to adverse weather, 
including user responses to various weather-specific interventions such as advisory information 
and control actions. The procedures implemented provide immediately applicable tools that 
capture knowledge accumulated to date in the growing body of literature regarding weather 
effects on traffic (especially in an aggregate sense).  The application to a real world network 
shows that the proposed model can be used to evaluate weather impacts on transportation 
networks and the effectiveness of weather-related VMS. 
 
The high level framework for incorporating weather impacts in TrEPS, presented in this study, 
provides a direction for future development towards a modern approach to traffic management 
under adverse weather that recognizes modern technological developments (e.g. weather 
sensing/forecasting, weather responsive traffic management).  In addition, heterogeneous user 
response to road weather information, reflecting their different risk taking behavior, can also be 
calibrated and included in a richer router choice model in future study. 
 
While the work accomplished as a result of this research effort advances the state of the art in 
incorporating weather effects in network analysis tools, additional effort in two main areas is 
necessary to translate these advances into practice.  The first entails actual implementation in the 
context of a regional planning and/or traffic operations agency to establish the model and 
calibrate it for application under a variety of local conditions and traffic patterns.  While the 
developments under this project provide all necessary mechanisms as well as default values for 
most likely situations, only through actual application within a progressive agency committed to 
providing information to users and to developing measures and plans to deal with weather-
related problems will the state of practice fully advance to the desired level.    
 
The second area of development would focus on weather-related traffic management and control 
measures, and interfacing their actual deployment with the decision-support tools developed in 
this project.  Again, the mechanisms included in this development were in certain cases based on 
proposed control measures that may have seen no or limited deployment.  Actual field testing 
and monitoring can provide essential data to calibrate and refine these mechanisms.  Furthermore, 
achieving the full benefits of traffic estimation and prediction tools for the intelligent 
management of traffic systems under weather-related events requires additional development of 
the real-time components of these tools, and their interface with real-time sensors and weather 
prediction sources.   
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    Appendix A:  Calibration Results for Speed-Density Relation and WAF  
 

# of obs. Weather Adjustment Factor (WAF)3 

Highway Milemark 
Station 

ID 
Weather 
condition 

kbp 
(vpmpl) 

uf 
(mph) 

vf 
(mph) α v0 

(mph) 
kjam 

(vpmpl) 
RMSE1 

(reg.1) 
R-sqrd2 

(reg.2) reg.1 reg.2 F_kbp F_uf F_vf F_fmax 

Normal 16 61.5 83.4 4.2 2 225 4.20 0.72 296 1950 1.00 1.00 1.00 1.00 

Light Rain 16 63.0 80.4 3.4 2 225 5.22 0.51 84 241 1.00 1.02 0.96 0.91 

Moderate Rain 15 67.0 85.3 3.6 2 225 4.04 0.66 13 59 0.94 1.09 1.02 0.92 
I-64 284.2 6 

Heavy Rain 16 67.4 85.0 3.2 2 225 3.88 0.53 7 28 1.00 1.10 1.02 0.82 

Normal 15 63.1 85.1 4.5 2 225 4.09 0.80 21710 21968 1.00 1.00 1.00 1.00 

Light Rain 10 62.9 77.0 4.6 2 225 6.60 0.79 1066 4043 0.67 1.00 0.91 0.91 

Moderate Rain 12 51.9 63.7 3.9 2 225 13.02 0.74 105 299 0.80 0.82 0.75 0.74 

Heavy Rain 10 57.5 70.8 4.7 2 225 7.98 0.89 21 85 0.67 0.91 0.83 0.71 

I-64 284.2 8 

Light Snow 10 59.9 72.4 4.3 2 225 7.73 0.75 107 183 0.67 0.95 0.85 0.69 

Normal 20 50.4 64.2 2.7 2 225 8.19 0.62 7160 8704 1.00 1.00 1.00 1.00 

Light Rain 15 47.8 56.6 2.5 2 225 7.92 0.70 372 1756 0.75 0.95 0.88 0.91 

Moderate Rain 10 44.0 48.5 2.3 2 225 5.48 0.65 7 103 0.50 0.87 0.76 0.63 
I-64 286.1 23 

Heavy Rain 21 46.8 64.2 3.4 2 225 9.28 0.94 7 13 1.05 0.93 1.00 0.49 

Normal 12 53.2 63.6 3.4 2 225 9.31 0.59 7159 17859 1.00 1.00 1.00 1.00 

Light Rain 12 47.5 55.9 3.1 2 225 11.85 0.53 850 1871 1.00 0.89 0.88 0.89 I-64 286.1 24 

Light Snow 12 47.8 58.0 3.7 2 225 15.85 0.61 53 107 1.00 0.90 0.91 0.45 

Normal 23 33.5 41.9 2.2 2 225 4.12 0.53 4058 10215 1.00 1.00 1.00 1.00 
I-64 286.6 27 

Light Rain 28 31.6 45.4 2.9 2 225 4.75 0.49 523 567 1.22 0.94 1.08 0.82 

Normal 10 52.7 58.9 2.5 2 225 5.93 0.85 5536 8162 1.00 1.00 1.00 1.00 

Light Rain 11 50.8 59.2 3.2 2 225 6.00 0.44 483 513 1.10 0.96 1.01 0.59 I-64 286.4 28 

Moderate Rain 12 51.6 72.4 6.4 2 225 9.02 0.66 35 9 1.20 0.98 1.23 0.43 

Normal 26 65.3 195.2 9.1 2 225 0.94 0.71 22113 307 1.00 1.00 1.00 1.00 
I-64 282.5 37 

Light Rain 24 65.0 118.8 5.5 2 225 0.75 0.61 1533 83 0.92 0.99 0.61 0.99 

Normal 21 64.4 128.7 7.2 2 225 3.53 0.48 12376 14368 1.00 1.00 1.00 1.00 

Light Rain 14 63.7 94.4 6.3 2 225 4.63 0.49 569 2416 0.67 0.99 0.73 0.68 I-64 283.5 47 

Moderate Rain 16 59.7 103.0 7.6 2 225 4.95 0.78 86 89 0.76 0.93 0.80 0.53 
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# of obs. Weather Adjustment Factor (WAF)3 

Highway Milemark 
Station 

ID 
Weather 
condition 

kbp 
(vpmpl) 

uf 
(mph) 

vf 
(mph) α v0 

(mph) 
kjam 

(vpmpl) 
RMSE1 

(reg.1) 
R-sqrd2 

(reg.2) reg.1 reg.2 F_kbp F_uf F_vf F_fmax 

Normal 25 61.2 205.4 10.5 2 225 7.18 0.80 23611 660 1.00 1.00 1.00 1.00 

Moderate Rain 14 54.1 72.1 4.6 2 225 9.86 0.52 315 64 0.56 0.88 0.35 0.74 

Heavy Rain 19 56.6 118.7 8.6 2 225 8.82 0.73 84 13 0.76 0.93 0.58 0.72 
I-64 283.5 48 

Light Snow 11 58.1 68.1 3.3 2 225 8.86 0.43 116 88 0.44 0.95 0.33 0.79 

Normal 30 65.7 87.2 2.0 2 225 5.85 0.34 11257 601 1.00 1.00 1.00 1.00 

Light Rain 28 63.1 99.3 3.5 2 225 7.51 0.84 1349 207 0.93 0.96 1.14 0.82 

Moderate Rain 21 61.9 98.2 4.8 2 225 5.07 0.65 224 19 0.70 0.94 1.13 0.77 
I-64 282.2 50 

Heavy Rain 11 57.6 64.8 2.4 2 225 12.45 0.27 36 12 0.37 0.88 0.74 0.59 

Normal 19 62.5 89.7 4.2 2 225 4.65 0.75 23153 10234 1.00 1.00 1.00 1.00 

Light Rain 15 61.0 81.8 4.4 2 225 6.74 0.80 1347 1968 0.79 0.98 0.91 0.87 

Moderate Rain 10 57.1 71.2 5.0 2 225 9.27 0.84 48 252 0.53 0.91 0.79 0.89 

Heavy Rain 16 61.6 85.5 4.6 2 225 6.11 0.91 36 49 0.84 0.99 0.95 0.72 

I-64 282.2 51 

Light Snow 14 58.5 83.2 5.6 2 225 6.14 0.82 127 104 0.74 0.94 0.93 0.59 

Normal 24 38.3 47.0 1.9 2 225 4.75 0.55 12660 9920 1.00 1.00 1.00 1.00 
I-64 282.1 52 

Moderate Rain 11 38.3 47.0 4.3 2 225 4.10 0.31 20 59 0.46 1.00 1.00 0.41 

Normal 22 62.2 87.6 3.4 2 225 5.47 0.59 19123 21707 1.00 1.00 1.00 1.00 
I-64 280.7 65 

Light Snow 27 56.7 101.9 4.7 2 225 9.16 0.73 250 60 1.23 0.91 1.16 0.83 

Normal 14 65.5 112.8 8.7 2 225 1.37 0.75 18478 1468 1.00 1.00 1.00 1.00 

Light Rain 16 65.1 126.5 9.2 2 225 1.69 0.67 1318 151 1.14 0.99 1.12 1.00 I-64 280.8 66 

Moderate Rain 14 64.5 104.1 7.6 2 225 0.74 0.98 71 17 1.00 0.98 0.92 0.49 

Normal 30 65.7 123.1 4.5 2 225 2.87 0.73 27950 1277 1.00 1.00 1.00 1.00 

Light Rain 28 63.6 110.0 4.2 2 225 4.44 0.83 2284 260 0.93 0.97 0.89 0.89 I-64 279 85 

Moderate Rain 28 65.3 122.8 4.9 2 225 9.78 0.96 79 31 0.93 0.99 1.00 0.82 
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# of obs. Weather Adjustment Factor (WAF)3 

Highway Milemark 
Station 

ID 
Weather 
condition 

kbp 
(vpmpl) 

uf 
(mph) 

vf 
(mph) α v0 

(mph) 
kjam 

(vpmpl) 
RMSE1 

(reg.1) 
R-sqrd2 

(reg.2) reg.1 reg.2 F_kbp F_uf F_vf F_fmax 

Normal 12 61.1 72.6 3.2 2 225 4.69 0.52 17578 10478 1.00 1.00 1.00 1.00 

Light Rain 13 57.7 102.7 10.0 2 225 7.38 0.27 1705 567 1.08 0.94 1.42 0.67 

Moderate Rain 10 42.4 65.5 10.0 2 225 16.32 0.30 94 55 0.83 0.69 0.90 0.43 
I-64 279 86 

Light Snow 14 54.0 102.7 10.3 2 225 8.51 0.28 84 11 1.17 0.88 1.41 0.52 

Normal 30 68.3 147.3 5.5 2 225 3.91 0.65 5538 744 1.00 1.00 1.00 1.00 

Light Rain 24 64.9 94.3 3.4 2 225 1.29 0.56 379 246 0.80 0.95 0.64 0.85 

Moderate Rain 20 64.4 100.4 4.9 2 225 0.75 0.55 16 19 0.67 0.94 0.68 0.59 
I-264 13.8 148 

Light Snow 16 62.5 82.4 3.9 2 225 1.34 0.91 14 14 0.53 0.91 0.56 0.45 

Normal 14 64.9 84.0 4.1 2 225 1.13 0.56 5471 1366 1.00 1.00 1.00 1.00 

Light Rain 12 64.2 77.5 3.5 2 225 2.34 0.85 457 249 0.86 0.99 0.92 0.98 

Moderate Rain 10 61.1 66.5 1.9 2 225 3.82 0.98 14 14 0.71 0.94 0.79 0.64 
I-264 14 153 

Heavy Rain 12 64.1 94.4 7.3 2 225 1.07 0.76 18 19 0.86 0.99 1.12 0.68 

Normal 21 64.4 85.0 2.9 2 225 0.64 0.82 3497 1677 1.00 1.00 1.00 1.00 
I-264 14 154 

Light Rain 20 63.6 85.4 3.3 2 225 1.26 0.94 295 148 0.95 0.99 1.00 0.88 

Normal 12 54.0 61.9 2.6 2 225 4.64 0.62 2177 28203 1.00 1.00 1.00 1.00 

Light Rain 10 53.5 61.3 3.1 2 225 4.76 0.86 137 2164 0.83 0.99 0.99 0.71 

Moderate Rain 11 49.3 59.1 3.7 2 225 3.42 0.82 10 91 0.92 0.91 0.95 0.59 
I-264 14.9 158 

Heavy Rain 17 47.2 72.6 5.7 2 225 4.52 0.45 17 24 1.42 0.87 1.17 0.53 

Normal 18 51.3 61.5 2.3 2 225 4.08 0.82 8566 19564 1.00 1.00 1.00 1.00 

Light Rain 12 51.4 57.8 2.2 2 225 6.66 0.85 172 1998 0.67 1.00 0.94 0.93 I-264 16.3 168 

Moderate Rain 12 46.4 52.1 2.2 2 225 8.53 0.82 10 109 0.67 0.90 0.85 0.80 

Normal 10 62.3 76.5 4.7 2 225 2.16 0.92 19488 9717 1.00 1.00 1.00 1.00 

Light Rain 10 59.8 74.6 5.0 2 225 3.73 0.91 1555 645 1.00 0.96 0.97 0.89 

Moderate Rain 10 54.6 65.1 4.0 2 225 7.54 0.95 79 18 1.00 0.88 0.85 0.78 
I-264 16.3 169 

Light Snow 16 46.2 62.2 4.2 2 225 11.19 0.78 89 15 1.60 0.74 0.81 0.79 
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# of obs. Weather Adjustment Factor (WAF)3 

Highway Milemark 
Station 

ID 
Weather 
condition 

kbp 
(vpmpl) 

uf 
(mph) 

vf 
(mph) α v0 

(mph) 
kjam 

(vpmpl) 
RMSE1 

(reg.1) 
R-sqrd2 

(reg.2) reg.1 reg.2 F_kbp F_uf F_vf F_fmax 

Normal 16 63.4 90.8 5.0 2 225 7.06 0.75 38675 5125 1.00 1.00 1.00 1.00 

Moderate Rain 10 51.7 67.1 5.9 2 225 13.76 0.64 253 86 0.63 0.81 0.74 0.82 

Heavy Rain 11 57.9 77.3 5.9 2 225 9.99 0.74 53 53 0.69 0.91 0.85 0.81 
I-564 50 135 

Light Snow 10 59.8 77.0 5.8 2 225 12.14 0.79 156 65 0.63 0.94 0.85 0.89 

Normal 12 63.3 72.6 2.6 2 225 3.49 0.67 26067 2961 1.00 1.00 1.00 1.00 
I-564 50 136 

Heavy Rain 10 52.2 84.0 10.8 2 225 9.60 0.64 29 13 0.83 0.83 1.16 0.57 

Normal 13 38.7 44.4 2.4 2 225 4.30 0.49 10193 7431 1.00 1.00 1.00 1.00 
I-564 50 137 

Light Rain 10 35.1 38.8 2.3 2 225 8.94 0.25 623 1053 0.77 0.91 0.87 0.80 
1    Root mean squared error of free-flow speed (uf) for the 1st regime 
2    R-squared value of the speed-density curve for the 2nd regime from the linear regression 
3    WAF for selected parameters for each location and each weather condition. For normal weather, WAF has the value of 1. 
     These WAF results are used as dependent variables in the linear regression of the WAF calibration process. 
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